29 research outputs found

    Raiders of the Lost Mud : The geology behind drilling incidents within the Balder Formation around the Corona Ridge, West of Shetland

    Get PDF
    This work forms part of the lead authorā€™s PhD research, which is funded by a University of Aberdeen College of Physical Sciences Scholarship. This study originally formed part of a talk delivered to the 2017 Schlumberger SIS Forum. Well log and drilling data interpretation was performed using Schlumberger Techlog* wellbore software platform. We would like to thank numerous staff at Schlumberger SIS in Aberdeen for useful discussions. DW would also like to thank staff at Chevronā€™s Aberdeen office for important insights on the Rosebank Field, particularly the presence of image logs. Andrew Hurst is thanked for informative discussions regarding smectite clays and their origins. Finally, DW would like to thank members of the VMRC Consortium for helpful feedback on a presentation related to the study, particularly staff at Siccar Point Energy. Two anonymous reviewers are thanked for their detailed reviews which greatly improved the paper.Peer reviewedPostprin

    Towards OPM-MEG in a virtual reality environment

    Get PDF
    Virtual reality (VR) provides an immersive environment in which a participant can experience a feeling of presence in a virtual world. Such environments generate strong emotional and physical responses and have been used for wide-ranging applications. The ability to collect functional neuroimaging data whilst a participant is immersed in VR would represent a step change for experimental paradigms; unfortunately, traditional brain imaging requires participants to remain still, limiting the scope of naturalistic interaction within VR. Recently however, a new type of magnetoencephalography (MEG) device has been developed, that employs scalp-mounted optically-pumped magnetometers (OPMs) to measure brain electrophysiology. Lightweight OPMs, coupled with precise control of the background magnetic field, enables participant movement during data acquisition. Here, we exploit this technology to acquire MEG data whilst a participant uses a virtual reality head-mounted display (VRHMD). We show that, despite increased magnetic interference from the VRHMD, we were able to measure modulation of alpha-band oscillations, and the visual evoked field. Moreover, in a VR experiment in which a participant had to move their head to look around a virtual wall and view a visual stimulus, we showed that the measured MEG signals map spatially in accordance with the known organisation of primary visual cortex. This technique could transform the type of neuroscientific experiment that can be undertaken using functional neuroimaging

    Magnetic Field Mapping and Correction for Moving OP-MEG

    Get PDF
    Background: Optically pumped magnetometers (OPMs) have made moving, wearable magnetoencephalography (MEG) possible. The OPMs typically used for MEG require a low background magnetic field to operate, which is achieved using both passive and active magnetic shielding. However, the background magnetic field is never truly zero Tesla, and so the field at each of the OPMs changes as the participant moves. This leads to position and orientation dependent changes in the measurements, which manifest as low frequency artefacts in MEG data. Objective: We model the spatial variation in the magnetic field and use the model to predict the movement artefact found in a dataset. Methods: We demonstrate a method for modelling this field with a triaxial magnetometer, then show that we can use the same technique to predict the movement artefact in a real OPM-based MEG (OP-MEG) dataset. Results: Using an 86-channel OP-MEG system, we found that this modelling method maximally reduced the power spectral density of the data by 27.8 Ā± 0.6 dB at 0 Hz, when applied over 5 s non-overlapping windows. Conclusion: The magnetic field inside our state-of-the art magnetically shielded room can be well described by low-order spherical harmonic functions. We achieved a large reduction in movement noise when we applied this model to OP-MEG data. Significance: Real-time implementation of this method could reduce passive shielding requirements for OP-MEG recording and allow the measurement of low-frequency brain activity during natural participant movement

    Mouth magnetoencephalography: A unique perspective on the human hippocampus

    Get PDF
    Traditional magnetoencephalographic (MEG) brain imaging scanners consist of a rigid sensor array surrounding the head; this means that they are maximally sensitive to superficial brain structures. New technology based on optical pumping means that we can now consider more flexible and creative sensor placement. Here we explored the magnetic fields generated by a model of the human hippocampus not only across scalp but also at the roof of the mouth. We found that simulated hippocampal sources gave rise to dipolar field patterns with one scalp surface field extremum at the temporal lobe and a corresponding maximum or minimum at the roof of the mouth. We then constructed a fitted dental mould to accommodate an Optically Pumped Magnetometer (OPM). We collected data using a previously validated hippocampal-dependant task to test the empirical utility of a mouth-based sensor, with an accompanying array of left and right temporal lobe OPMs. We found that the mouth sensor showed the greatest task-related theta power change. We found that this sensor had a mild effect on the reconstructed power in the hippocampus (~10% change) but that coherence images between the mouth sensor and reconstructed source images showed a global maximum in the right hippocampus. We conclude that augmenting a scalp-based MEG array with sensors in the mouth shows unique promise for both basic scientists and clinicians interested in interrogating the hippocampus
    corecore