1,542 research outputs found

    Instabilities of noncommutative two dimensional BF model

    Full text link
    The noncommutative extension of two dimensional BF model is considered. It is shown that the realization of the noncommutative map via the Groenewold-Moyal star product leads to instabilities of the action, hence to a non renormalizable theory.Comment: 9 page

    Pilot Wave model that includes creation and annihilation of particles

    Full text link
    The purpose of this paper is to come up with a Pilot Wave model of quantum field theory that incorporates particle creation and annihilation without sacrificing determinism. This has been previously attempted in an article by the same author titled "Incorporating particle creation and annihilation in Pilot Wave model", in a much less satisfactory way. In this paper I would like to "clean up" some of the things. In particular, I would like to get rid of a very unnatural concept of "visibility" of particles, which makes the model much simpler. On the other hand, I would like to add a mechanism for decoherence, which was absent in the previous version.Comment: 9 pages, no figure

    Geophysical constraint on a relic background of the dilatons

    Full text link
    According to a scenario in string cosmology, a relic background of light dilatons can be a significant component of the dark matter in the Universe. A new approach of searching for such a dilatonic background by observing Earth's surface gravity was proposed in my previous work. In this paper, the concept of the geophysical search is briefly reviewed, and the geophysical constraint on the dilaton background is presented as a function of the strength of the dilaton coupling, qb2q_b^2. For simplicity, I focus on massless dilatons and assume a simple Earth model. With the current upper limit on qb2q_b^2, we obtain the upper limit on the dimensionless energy density of the massless background, ΩDWh10026×107\Omega_{DW}h^2_{100} \leq 6 \times 10^{-7}, which is about one-order of magnitude more stringent than the one from astrophysical observations, at the frequency of \sim 7 ×\times 105^{-5} Hz. If the magnitude of qb2q_b^2 is experimentally found to be smaller than the current upper limit by one order of magnitude, the geophysical upper limit on ΩDWh1002\Omega_{DW}h^2_{100} becomes less stringent and comparable to the one obtained from the astrophysical observations.Comment: 6 pages, Proceedings for the 8th Edoardo Amaldi Conference on Gravitational Waves, 21-26 June, 2009, Columbia University, New York, US

    Intermediate-mass-ratio-inspirals in the Einstein Telescope. II. Parameter estimation errors

    Full text link
    We explore the precision with which the Einstein Telescope (ET) will be able to measure the parameters of intermediate-mass-ratio inspirals (IMRIs). We calculate the parameter estimation errors using the Fisher Matrix formalism and present results of a Monte Carlo simulation of these errors over choices for the extrinsic parameters of the source. These results are obtained using two different models for the gravitational waveform which were introduced in paper I of this series. These two waveform models include the inspiral, merger and ringdown phases in a consistent way. One of the models, based on the transition scheme of Ori & Thorne [1], is valid for IMBHs of arbitrary spin, whereas the second model, based on the Effective One Body (EOB) approach, has been developed to cross-check our results in the non-spinning limit. In paper I of this series, we demonstrated the excellent agreement in both phase and amplitude between these two models for non-spinning black holes, and that their predictions for signal-to-noise ratios (SNRs) are consistent to within ten percent. We now use these models to estimate parameter estimation errors for binary systems with masses 1.4+100, 10+100, 1.4+500 and 10+500 solar masses (SMs), and various choices for the spin of the central intermediate-mass black hole (IMBH). Assuming a detector network of three ETs, the analysis shows that for a 10 SM compact object (CO) inspiralling into a 100 SM IMBH with spin q=0.3, detected with an SNR of 30, we should be able to determine the CO and IMBH masses, and the IMBH spin magnitude to fractional accuracies of 0.001, 0.0003, and 0.001, respectively. We also expect to determine the location of the source in the sky and the luminosity distance to within 0.003 steradians, and 10%, respectively. We also assess how the precision of parameter determination depends on the network configuration.Comment: 21 pages, 5 figures. One reference corrected in v3 for consistency with published version in Phys Rev

    On Truncations of the Exact Renormalization Group

    Get PDF
    We investigate the Exact Renormalization Group (ERG) description of (Z2Z_2 invariant) one-component scalar field theory, in the approximation in which all momentum dependence is discarded in the effective vertices. In this context we show how one can perform a systematic search for non-perturbative continuum limits without making any assumption about the form of the lagrangian. Concentrating on the non-perturbative three dimensional Wilson fixed point, we then show that the sequence of truncations n=2,3,n=2,3,\dots, obtained by expanding about the field φ=0\varphi=0 and discarding all powers φ2n+2\varphi^{2n+2} and higher, yields solutions that at first converge to the answer obtained without truncation, but then cease to further converge beyond a certain point. No completely reliable method exists to reject the many spurious solutions that are also found. These properties are explained in terms of the analytic behaviour of the untruncated solutions -- which we describe in some detail.Comment: 15 pages (with figures), Plain TeX, uses psfig, 5 postscript figures appended as uuencoded compressed tar file, SHEP 93/94-23, CERN-TH.7281/94. (Corrections of typos, and small additions to improve readability: version to be published in Phys. Lett. B

    BRST Cohomology of N=2 Super-Yang-Mills Theory in 4D

    Full text link
    The BRST cohomology of the N=2 supersymmetric Yang-Mills theory in four dimensions is discussed by making use of the twisted version of the N=2 algebra. By the introduction of a set of suitable constant ghosts associated to the generators of N=2, the quantization of the model can be done by taking into account both gauge invariance and supersymmetry. In particular, we show how the twisted N=2 algebra can be used to obtain in a straightforward way the relevant cohomology classes. Moreover, we shall be able to establish a very useful relationship between the local gauge invariant polynomial trϕ2tr\phi^2 and the complete N=2 Yang-Mills action. This important relation can be considered as the first step towards a fully algebraic proof of the one-loop exactness of the N=2 beta function.Comment: 22 pages, LaTeX, final version to appear in Journ. Phys.

    Inflation and initial conditions in the pre-big bang scenario

    Get PDF
    The pre-big bang scenario describes the evolution of the Universe from an initial state approaching the flat, cold, empty, string perturbative vacuum. The choice of such an initial state is suggested by the present state of our Universe if we accept that the cosmological evolution is (at least partially) duality-symmetric. Recently, the initial conditions of the pre-big bang scenario have been criticized as they introduce large dimensionless parameters allowing the Universe to be "exponentially large from the very beginning". We agree that a set of initial parameters (such as the initial homogeneity scale, the initial entropy) larger than those determined by the initial horizon scale, H^{-1}, would be somewhat unnatural to start with. However, in the pre-big bang scenario, the initial parameters are all bounded by the size of the initial horizon. The basic question thus becomes: is a maximal homogeneity scale of order H^{-1} necessarily unnatural if the initial curvature is small and, consequently, H^{-1} is very large in Planck (or string) units? In the impossibility of experimental information one could exclude "a priori", for large horizons, the maximal homogeneity scale H^{-1} as a natural initial condition. In the pre-big bang scenario, however, pre-Planckian initial conditions are not necessarily washed out by inflation and are accessible (in principle) to observational tests, so that their naturalness could be also analyzed with a Bayesan approach, in terms of "a posteriori" probabilities.Comment: 4 pages, Latex, one figure. Many references added. The text has been improved in many points. To appear in Phys. Rev.

    Nonrenormalization theorems for N=2 Super Yang-Mills

    Full text link
    The BRST algebraic proofs of the the nonrenormalization theorems for the beta functions of N=2 and N=4 Super Yang-Mills theories are reviewed.Comment: 3 pages, contribution to SUSY 2000 Encyclopedi
    corecore