1,844 research outputs found
Physics of rotation in stellar models
In these lecture notes, we present the equations presently used in stellar
interior models in order to compute the effects of axial rotation. We discuss
the hypotheses made. We suggest that the effects of rotation might play a key
role at low metallicity.Comment: 32 pages, 7 figures, lectures, CNRS school, will be published by
Springe
Structure Formation Inside Triaxial Dark Matter Halos: Galactic Disks, Bulges and Bars
We investigate the formation and evolution of galactic disks immersed in
assembling live DM halos. Disk/halo components have been evolved from the
cosmological initial conditions and represent the collapse of an isolated
density perturbation. The baryons include gas (which participates in star
formation [SF]) and stars. The feedback from the stellar energy release onto
the ISM has been implemented. We find that (1) The growing triaxial halo figure
tumbling is insignificant and the angular momentum (J) is channeled into the
internal circulation; (2) Density response of the disk is out of phase with the
DM, thus diluting the inner halo flatness and washing out its prolateness; (3)
The total J is neathly conserved, even in models accounting for feedback; (4)
The specific J for the DM is nearly constant, while that for baryons is
decreasing; (5) Early stage of disk formation resembles the cat's cradle -- a
small amorphous disk fueled via radial string patterns; (6) The initially
puffed up gas component in the disk thins when the SF rate drops below ~5
Mo/yr; (7) About 40%-60% of the baryons remain outside the SF region; (8)
Rotation curves appear to be flat and account for the observed disk/halo
contributions; (9) A range of bulge-dominated to bulgeless disks was obtained;
Lower density threshold for SF leads to a smaller, thicker disk; Gravitational
softening in the gas has a substantial effect on various aspects of galaxy
evolution and mimics a number of intrinsic processes within the ISM; (10) The
models are characterized by an extensive bar-forming activity; (11) Nuclear
bars, dynamically coupled and decoupled form in response to the gas inflow
along the primary bars.Comment: 18 pages, 16 figures, accepted by the Astrophysical Journal. Minor
revisions. The high-resolution figures can be found at
http://www.pa.uky.edu/~shlosman/research/galdyn/figs07a
Effects of rotation on the evolution and asteroseismic properties of red giants
The influence of rotation on the properties of red giants is studied in the
context of the asteroseismic modelling of these stars. While red giants exhibit
low surface rotational velocities, we find that the rotational history of the
star has a large impact on its properties during the red giant phase. In
particular, for stars massive enough to ignite He burning in non-degenerate
conditions, rotational mixing induces a significant increase of the stellar
luminosity and shifts the location of the core helium burning phase to a higher
luminosity in the HR diagram. This of course results in a change of the seismic
properties of red giants at the same evolutionary state. As a consequence the
inclusion of rotation significantly changes the fundamental parameters of a red
giant star as determined by performing an asteroseismic calibration. In
particular rotation decreases the derived stellar mass and increases the age.
Depending on the rotation law assumed in the convective envelope and on the
initial velocity of the star, non-negligible values of rotational splitting can
be reached, which may complicate the observation and identification of
non-radial oscillation modes for red giants exhibiting moderate surface
rotational velocities. By comparing the effects of rotation and overshooting,
we find that the main-sequence widening and the increase of the H-burning
lifetime induced by rotation (Vini=150 km/s) are well reproduced by
non-rotating models with an overshooting parameter of 0.1, while the increase
of luminosity during the post-main sequence evolution is better reproduced by
non-rotating models with overshooting parameters twice as large. This is due to
the fact that rotation not only increases the size of the convective core but
also changes the chemical composition of the radiative zone.Comment: 9 pages, 13 figures, accepted for publication in A&
Populations of rotating stars II. Rapid rotators and their link to Be-type stars
Even though it is broadly accepted that single Be stars are rapidly rotating
stars surrounded by a flat rotating circumstellar disk, there is still a debate
about how fast these stars rotate and also about the mechanisms involved in the
angular-momentum and mass input in the disk. We study the properties of stars
that rotate near their critical-rotation rate and investigate the properties of
the disks formed by equatorial mass ejections. We used the most recent Geneva
stellar evolutionary tracks for rapidly rotating stars that reach the critical
limit and used a simple model for the disk structure. We obtain that for a 9
Msun star at solar metallicity, the minimum average velocity during the Main
Sequence phase to reach the critical velocity is around 330 km/s, whereas it
would be 390 km/s at the metallicity of the Small Magellanic Cloud (SMC). Red
giants or supergiants originating from very rapid rotators rotate six times
faster and show N/C ratios three times higher than those originating from
slowly rotating stars. This difference becomes stronger at lower metallicity.
It might therefore be very interesting to study the red giants in clusters that
show a large number of Be stars on the MS band. On the basis of our single-star
models, we show that the observed Be-star fraction with cluster age is
compatible with the existence of a temperature-dependent lower limit in the
velocity rate required for a star to become a Be star. The mass, extension, and
diffusion time of the disks produced when the star is losing mass at the
critical velocity, obtained from simple parametrized expressions, are not too
far from those estimated for disks around Be-type stars. At a given
metallicity, the mass and the extension of the disk increase with the initial
mass and with age on the MS phase. Denser disks are expected in low-metallicity
regions.Comment: Accepted for publication in A&A, language edite
The evolution of rotating stars
First, we review the main physical effects to be considered in the building
of evolutionary models of rotating stars on the Upper Main-Sequence (MS). The
internal rotation law evolves as a result of contraction and expansion,
meridional circulation, diffusion processes and mass loss. In turn,
differential rotation and mixing exert a feedback on circulation and diffusion,
so that a consistent treatment is necessary.
We review recent results on the evolution of internal rotation and the
surface rotational velocities for stars on the Upper MS, for red giants,
supergiants and W-R stars. A fast rotation is enhancing the mass loss by
stellar winds and reciprocally high mass loss is removing a lot of angular
momentum. The problem of the ``break-up'' or -limit is critically
examined in connection with the origin of Be and LBV stars. The effects of
rotation on the tracks in the HR diagram, the lifetimes, the isochrones, the
blue to red supergiant ratios, the formation of W-R stars, the chemical
abundances in massive stars as well as in red giants and AGB stars, are
reviewed in relation to recent observations for stars in the Galaxy and
Magellanic Clouds. The effects of rotation on the final stages and on the
chemical yields are examined, as well as the constraints placed by the periods
of pulsars. On the whole, this review points out that stellar evolution is not
only a function of mass M and metallicity Z, but of angular velocity
as well.Comment: 78 pages, 7 figures, review for Annual Review of Astronomy and
Astrophysics, vol. 38 (2000
Quantitative Estimates of Environmental Effects on the Star Formation Rate of Disk Galaxies in Clusters of Galaxies
A simple model is constructed to evaluate the change of star formation rate
of a disk galaxy due to environmental effects in clusters of galaxies. Three
effects, (1) tidal force from the potential well of the cluster, (2) increase
of external pressure when the galaxy plows into the intracluster medium, (3)
high-speed encounters between galaxies, are investigated. General analysis
indicates that the star formation rate increases significantly when the
pressure of molecular clouds rises above in yr. The tidal force from the potential well of the cluster increases
pressures of molecular clouds in a disk galaxy infalling towards the cluster
center. Before the galaxy reaches the cluster center, the star formation rate
reaches a maximum. The peak is three to four times larger than the initial
value. If this is the main mechanism of the Butcher-Oemler effect, blue
galaxies are expected to be located within kpc from the center of
the cluster. However this prediction is inconsistent with the recent
observations. The increase of external pressure when the galaxy plows into the
intracluster medium does not change star formation rate of a disk galaxy
significantly. The velocity perturbation induced by a single high-speed
encounter between galaxies is too small to affect star formation rate of a disk
galaxy, while successive high-speed encounters (galaxy harassment) trigger star
formation activity because of the accumulation of gas in the galaxy center.
Therefore, the galaxy harassment remains as the candidate for a mechanism of
the Butcher-Oemler effect.Comment: 12 pages, 13 figures. To be published in Ap
Rest-Frame Ultraviolet Spectra of z~3 Lyman Break Galaxies
We present the results of a systematic study of the rest-frame UV
spectroscopic properties of Lyman Break Galaxies (LBGs). The database of almost
1000 LBG spectra proves useful for constructing high S/N composite spectra. The
composite spectrum of the entire sample reveals a wealth of features
attributable to hot stars, HII regions, dust, and outflowing neutral and
ionized gas. By grouping the database according to galaxy parameters such as
Lyman-alpha equivalent width, UV spectral slope, and interstellar kinematics,
we isolate some of the major trends in LBG spectra which are least compromised
by selection effects. We find that LBGs with stronger Lyman-alpha emission have
bluer UV continua, weaker low-ionization interstellar absorption lines, smaller
kinematic offsets between Lyman-alpha and the interstellar absorption lines,
and lower star-formation rates. There is a decoupling between the dependence of
low- and high-ionization outflow features on other spectral properties. Most of
the above trends can be explained in terms of the properties of the large-scale
outflows seen in LBGs. According to this scenario, the appearance of LBG
spectra is determined by a combination of the covering fraction of outflowing
neutral gas which contains dust, and the range of velocities over which this
gas is absorbing. Higher sensitivity and spectral resolution observations are
still required for a full understanding of the covering fraction and velocity
dispersion of the outflowing neutral gas in LBGs, and its relationship to the
escape fraction of Lyman continuum radiation in galaxies at z~3.Comment: 28 pages including 17 figures. Accepted for publication in Ap
- …