236 research outputs found

    Auto-parametrização de meta-heurísticas para escalonamento dinâmico

    Get PDF
    Este artigo aborda o problema da parametrização de Técnicas de Optimização Inspiradas na Biologia (BIT - Biological Inspired Optimization Techniques), também conhecidas como Meta-heurísticas, considerando a importância que estas técnicas têm na resolução de situações de mundo real, sujeitas a perturbações externas. É proposto um módulo de aprendizagem com o objectivo de permitir que um Sistema Multi-Agente (SMA) para Escalonamento seleccione automaticamente uma Metaheurística e escolha a parametrização a usar no processo de optimização. Para o módulo de aprendizagem foi usado o Raciocínio baseado em Casos (RBC), permitindo ao sistema aprender a partir da experiência acumulada na resolução de problemas similares. Através da análise dos resultados obtidos é possível concluir acerca das vantagens da sua utilização

    MASDScheGATS: a prototype system for dynamic scheduling

    Get PDF
    A manufacturing system has a natural dynamic nature observed through several kinds of random occurrences and perturbations on working conditions and requirements over time. For this kind of environment it is important the ability to efficient and effectively adapt, on a continuous basis, existing schedules according to the referred disturbances, keeping performance levels. The application of Meta-Heuristics and Multi-Agent Systems to the resolution of this class of real world scheduling problems seems really promising. This paper presents a prototype for MASDScheGATS (Multi-Agent System for Distributed Manufacturing Scheduling with Genetic Algorithms and Tabu Search)

    Mecanismo de negociação para sistema de escalonamento dinâmico

    Get PDF
    Este artigo propõe um Mecanismo de Negociação para Escalonamento Dinâmico com recurso a Swarm Intelligence (SI). No Mecanismo de Negociação, os agentes devem competir para obter um plano de escalamento global. SI é o termo geral para várias técnicas computacionais que retiram ideias e inspiração nos comportamentos sociais de insectos e outros animais. Este artigo propõe uma abordagem híbrida de diferentes conceitos da Inteligência Artificial (IA), como SI, Negociação em Sistemas Multi-Agente (SMA) e Técnicas de Aprendizagem Automática (AA). Este trabalho concentra a sua atenção na negociação, processo através do qual múltiplos agentes auto-interessados podem chegar a acordo através da troca competitiva de recursos

    Swarm intelligence for scheduling: a review

    Get PDF
    Swarm Intelligence generally refers to a problem-solving ability that emerges from the interaction of simple information-processing units. The concept of Swarm suggests multiplicity, distribution, stochasticity, randomness, and messiness. The concept of Intelligence suggests that problem-solving approach is successful considering learning, creativity, cognition capabilities. This paper introduces some of the theoretical foundations, the biological motivation and fundamental aspects of swarm intelligence based optimization techniques such Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and Artificial Bees Colony (ABC) algorithms for scheduling optimization

    An Evolutionary Based Algorithm for Resources System Selection Problem in Agile/Virtual Enterprises

    Get PDF
    The problem of resources systems selection takes an important role in Agile/Virtual Enterprises (A/VE) integration. However, the resources systems selection problem is difficult to solve in A/VE because: it can be of exponential complexity resolution; it can be a multi criteria problem; and because there are different types of A/V Es with different requisites that have originated the development of a specific resources selection model for each one of them. In this work we have made some progress in order to identify the principal gaps to be solved. This paper will show one of those gaps in the algorithms area to be applied for its resolution. In attention to that gaps we address the necessity to develop new algorithms and with more information disposal, for its selection by the Broker. In this paper we propose a genetic algorithm to deal with a specific case of resources system selection problem when the space solution dimension is high.info:eu-repo/semantics/publishedVersio

    Cooperative intelligent system for manufacturing scheduling

    Get PDF
    Hybridization of intelligent systems is a promising research field of computational intelligence focusing on combinations of multiple approaches to develop the next generation of intelligent systems. In this paper we will model a Manufacturing System by means of Multi-Agent Systems and Meta-Heuristics technologies, where each agent may represent a processing entity (machine). The objective of the system is to deal with the complex problem of Dynamic Scheduling in Manufacturing Systems

    Scheduling Single-Machine Problem Oriented by Just-In-Time Principles - A Case Study

    Get PDF
    Developments in advanced autonomous production resources have increased the interest in the Single-Machine Scheduling Problem (SMSP). Until now, researchers used SMSP with little to no practical application in industry, but with the introduction of multi-purpose machines, able of executing an entire task, such as 3D Printers, replacing extensive production chains, single-machine problems are becoming a central point of interest in real-world scheduling. In this paper we study how simple, easy to implement, Just-in-Time (JIT) based, constructive heuristics, can be used to optimize customer and enterprise oriented performance measures. Customer oriented performance measures are mainly related to the accomplishment of due dates while enterprise-oriented ones typically consider other time-oriented measures.The authors wish to acknowledge the support of the Fundação para a Ciência e Tecnologia (FCT), Portugal, through the grant “Projeto Estratégico – UI 252 – 2011–2012” reference PEst-OE/EME/UI0252/2011 and FCOMP-01-0124FEDER-PEst-OE/EEI/UI0760/2014info:eu-repo/semantics/publishedVersio

    Case-based reasoning for meta-heuristics self-parameterization in a multi-agent scheduling system

    Get PDF
    A novel agent-based approach to Meta-Heuristics self-configuration is proposed in this work. Meta-heuristics are examples of algorithms where parameters need to be set up as efficient as possible in order to unsure its performance. This paper presents a learning module for self-parameterization of Meta-heuristics (MHs) in a Multi-Agent System (MAS) for resolution of scheduling problems. The learning is based on Case-based Reasoning (CBR) and two different integration approaches are proposed. A computational study is made for comparing the two CBR integration perspectives. In the end, some conclusions are reached and future work outlined

    An ordered heuristic for the allocation of resources in unrelated parallel-machines

    Get PDF
    All rights reserved. Global competition pressures have forced manufactures to adapt their productive capabilities. In order to satisfy the ever-changing market demands many organizations adopted flexible resources capable of executing several products with different performance criteria. The unrelated parallel-machines makespan minimization problem (Rm||Cmax) is known to be NP-hard or too complex to be solved exactly. In the heuristics used for this problem, the MCT (Minimum Completion Time), which is the base for several others, allocates tasks in a random like order to the minimum completion time machine. This paper proposes an ordered approach to the MCT heuristic. MOMCT (Modified Ordered Minimum Completion Time) will order tasks in accordance to the MS index, which represents the mean difference of the completion time on each machine and the one on the minimum completion time machine. The computational study demonstrates the improved performance of MOMCT over the MCT heuristic.This work is supported by FEDER Funds through the “Programa Operacional Factores de Competitividade - COMPETE” program and by National Funds through FCT “Fundação para a Ciência e a Tecnologia” under the project: FCOMP-01-0124-FEDER-PEst-OE/EEI/UI0760/2011 and PEstOE/EEI/UI0760/2014.info:eu-repo/semantics/publishedVersio

    Evaluation of the Simulated Annealing and the Discrete Artificial Bee Colony in the Weight Tardiness Problem with Taguchi Experiments Parameterization

    Get PDF
    Meta-Heuristics (MH) are the most used optimization techniques to approach Complex Combinatorial Problems (COPs). Their ability to move beyond the local optimums make them an especially attractive choice to solve complex computational problems, such as most scheduling problems. However, the knowledge of what Meta-Heuristics perform better in certain problems is based on experiments. Classic MH, as the Simulated Annealing (SA) has been deeply studied, but newer MH, as the Discrete Artificial Bee Colony (DABC) still need to be examined in more detail. In this paper DABC has been compared with SA in 30 academic benchmark instances of the weighted tardiness problem (1 parallel to Sigma w(j)T(j)). Both MH parameters were fine-tuned with Taguchi Experiments. In the computational study DABC performed better and the subsequent statistical study demonstrated that DABC is more prone to find near-optimum solutions. On the other hand SA appeared to be more efficient.This work is supported by FEDER Funds through the "Programa Operacional Factores de Competitividade - COMPETE" program and by National Funds through FCT "Fundacao para a Ciencia e a Tecnologia" under the project: PEst-OE/EEI/UI0760/2014, and PEst2015-2020.info:eu-repo/semantics/publishedVersio
    corecore