42 research outputs found

    Sex Differences and Seasonal Trade-Offs in Response to Injured and Non-Injured Conspecifics in Red-Spotted Newts, Notophthalmus viridescens

    Full text link
    Injured prey often release alarm chemicals that induce antipredator behaviors in conspecifics. Injured or killed prey most likely release a wide array of chemicals in addition to alarm substances, such as sexual pheromones, which could enhance or compromise antipredator responses. Thus, damage-release cues provide an excellent opportunity to examine the influence of seasonally fluctuating sexual pheromones on antipredator behaviors. We used a series of laboratory and field experiments and meta-analysis to examine seasonal changes and sex differences in the response of red-spot-ted newts, Notophthalmus viridescens, to the odor of non-injured conspecifics and conspecific tissue extracts, the latter of which presumably contain pheromones of non-injured conspecifics combined with alarm chemicals signaling predation. During the peak of the breeding season, males were attracted to females and multiple males, but did not avoid tissue extracts from either sex. As the breeding season waned, male attraction to females and males decreased, while avoidance of alarm extracts from both sexes concurrently increased. In contrast to male behavior, females were indifferent to both sexes during the breeding season, and showed significant avoidance only of female extract. As the breeding season progressed, females displayed no change in response to treatments. Male and female responses to female rinse and extract differed significantly, but their response to male treatments did not. During the non-breeding season, both males and females were indifferent to the odor of conspecifics and avoided conspecific tissue extracts, with the magnitude of male avoidance greater than that of female avoidance, suggesting sex differences in response to alarm cues in both the breed-ing and non-breeding seasons. In general, both male and female response to conspecific odor and tissue extracts covaried positively, suggesting that social pheromones can be detected within conspecific macerates and com-promise alarm-chemical avoidance. Many of the sex differences in both seasons are likely explained by selection pressures imposed on males to intensely mate search during the breeding season, suggesting that the mating system of newts directly influences predation threat during reproductive activity and may have significant indirect consequences on risk during the non-breeding season

    On Temporal Variation and Conflicting Selection Pressures: A Test of Theory Using Newts

    Full text link
    Most studies that examine conflicting selection pressures hold resources and risks constant, despite their ubiquitous fluctuation. Since little is known about the consequences of neglecting this variation, we examined the temporal response of male red-spotted newts, Notophthalmus viridescens, to conflicting female pheromones and damage-release alarm chemicals signaling predation. After a single exposure in both the laboratory and field, males were attracted to female odor and avoided conspecific alarm chemicals. Response to these combined cues depended on time after exposure, with males initially avoiding, and then being attracted to, the cue combination. This response shift was due to the resource and risk declining at different rates, and female odor accelerating male recovery from antipredator behavior. In the laboratory, males suppressed activity when exposed to alarm chemicals alone but increased their activity when female odor was added. Iterative exposures through the breeding season revealed that, as male mate search activity declined, male avoidance of alarm chemicals increased, but alarm chemical production appeared unchanged. Thawing dates differed between ponds of the same and different populations, which offset levels of mate search activity and consequently alarm chemical avoidance. As a result, simultaneous pond surveys made it appear as though there was geographic variation in reproductive and predator-avoidance behaviors. However, when thawing dates were aligned, the time courses of reproductive and predator-avoidance behaviors for the ponds coincided, demonstrating that observed site differences were predominantly due to different behavioral onsets, which would have gone overlooked had the larger temporal scale not been considered. These results indicate that temporal variation can be easily mistaken for geographic variation in behavior, increasing the potential for data interpretation errors. These studies underscore the importance of considering temporal variation when examining conflicting selection pressures

    The Ontogeny of Chemically-Mediated Antipredator Behaviours in Newts (Notophthalmus viridescens): Responses to Injured and Non-Injured Conspecifics

    Full text link
    Responses to alarm chemicals from injured prey may influence predation risk and foraging success of receivers and senders, while learning can influence the strength of these responses. Thus, it is important to know when in ontogeny prey produce and detect alarm substances and how learning shapes their response, but surprisingly little is known about either of these topics. We assessed when in the life of red-spotted newts, Notophthalmus viridescens, alarm chemicals are produced and detected by comparing adult versus eft (terrestrial juveniles) and larval responses to rinses and tissue extracts from individuals in each life-history stage. To evaluate the influence of experience in larvae exposed to conspecific alarm substances and rinses from adults known to cannibalize larvae, we compared the response of naive larvae, which had no prior experience with alarm chemicals or predators, to experienced larvae, which were likely to have experienced alarm chemicals and predators in their native pond. Larvae were indifferent to larval rinses and extracts, but reduced their activity in response to adult rinses and extracts. There was no difference between responses of recently hatched naive and experienced larvae, indicating that larvae exhibit innate antipredator behaviors in response to adult odour. Adults were indifferent to all larval treatments and adult rinse, but avoided adult extract. Since neither adults nor larvae responded to larval extract, larvae did not appear to possess alarm chemicals, and consequently, we were unable to assess the influence of experience on alarm substance response in larvae. Adults and efts were indifferent to rinses, but avoided extracts from conspecifics of both life-history stages. Together, these results demonstrate that red-spotted newts do not produce alarm chemicals until late in larval development, but can respond to predation-related chemical cues soon after hatching

    Behavioural Responses by Red-Backed Salamanders to Conspecific and Heterospecific Cues

    Full text link
    Chemical cues released from injured prey are thought to indicate the proximity of a predator or predation event, and therefore, an area of elevated predation risk. Prey often avoid chemical cues released from injured heterospecifics, but there is little evidence to determine whether this is due to homologous cues among phylogenetically related species, or avoidance of injured syntopic species that experience predation from the same predators. The purpose of this study was to examine the response of terrestrial red-backed salamanders (Plethodon cinereus) to chemical cues from non-injured and injured members of their prey guild that vary in their relatedness to P cinereus. In the laboratory, P. cinereus avoided chemical cues from injured conspecifics, injured and non-injured slimy salamanders (P glutinosus), and injured confamilial dusky salamanders (Desmognathus ochrophaeus). Red-backed salamanders did not avoid rinses from non-injured conspecifics and dusky salamanders, or cues from injured and non-injured earthworms (Lumbricus sp.), a more distantly related prey guild member. These results cannot be fully explained by either phylogenetic relatedness (among plethodontid salamanders) or prey guild membership alone. We suggest that a combination of these factors, and perhaps others, likely influenced the evolution of heterospecific alarm cue avoidance in the red-backed salamander

    To Avoid or Not to Avoid? Factors Influencing the Discrimination or Predator Diet Cues by a Terrestrial Salamander

    Full text link
    Many prey species use chemical cues deposited by predators to assess predation risk, and some prey are capable of discriminating among predator chemical traces based on the predator’s recent diet. Here we test the inïŹ‚uence of genetic relatedness (degree of genetic similarity between prey) and ecological relatedness (degree of refuge and trophic overlap between syntopic prey) on the evolution of predator-diet discrimination by red-backed salamanders, Plethodon cinereus. In experiment 1, we examined whether red-backed salamanders from Binghamton University (Binghamton, New York, U.S.A.) would differentially respond to chemical traces from garter snakes (Thamnophis sirtalis) fed conspeciïŹc P. cinereus from four populations belonging to three phylogenetic groups: Group II from Mountain Lake, Virginia, Group III from Binghamton University, New York, Group III from Hawk Mountain, Pennsylvania, and Group IV from Cherry Springs, Pennsylvania, U.S.A. The test salamanders only avoided chemical traces from garter snakes fed salamanders from the two Group III sites, although the response to the Group III-Hawk Mountain treatment was intermediate to that for the Group III-Binghamton University treatment and the Group II and IV treatments. In experiment 2, we examined whether red-backed salamanders collected from two subpopulations, syntopic or allotopic with two-lined salamanders, Eurycea bislineata, vary in their response to chemical cues from garter snakes foraging on two-lined salamanders. Only red-backed salamanders syntopic with E. bislineata avoided chemical traces from garter snakes fed E. bislineata. These results suggest that both genetic and ecological relatedness play a role in the evolution of predator-diet discrimination in red-backed salamanders

    Bunk Space Requirements for Growing Beef Cattle Limit-Fed a High-Energy Corn and Corn Co-Product Diet

    Get PDF
    Objective: The objective of our experiment was to evaluate the effects of bunk allotment on performance of growing beef calves during a 58-day receiving period and investigate possible residual effects of bunk-space allotment on subsequent growth performance during a 90-day grazing season. Study Description: A group of 385 crossbred steers (initial weight 473 ± 56 lb) were purchased in Texas and transported to the Kansas State University Beef Stocker Unit. Calves were blocked by arrival date, assigned to one of four bunk space treatments (i.e., 10, 15, 20, or 25 in of bunk per head), and limit-fed a high-energy corn and corn co-product diet for 58 days. Following the receiving period, steers were blocked by bunk-space treatment, randomly assigned to one of eighteen pastures, and grazed for 90 days. The Bottom Line: We interpreted our data to suggest that bunk allotments of 10, 15, 20, or 25 in per calf had minimal impact on growth performance during a 58-day receiving period and did not affect final body weights following a 90-day grazing season

    Akt1-associated actomyosin remodelling is required for nuclear lamina dispersal and nuclear shrinkage in epidermal terminal differentiation

    Get PDF
    Keratinocyte cornification and epidermal barrier formation are tightly controlled processes, which require complete degradation of intracellular organelles, including removal of keratinocyte nuclei. Keratinocyte nuclear destruction requires Akt1-dependent phosphorylation and degradation of the nuclear lamina protein, Lamin A/C, essential for nuclear integrity. However, the molecular mechanisms that result in complete nuclear removal and their regulation are not well defined. Post-confluent cultures of rat epidermal keratinocytes (REKs) undergo spontaneous and complete differentiation, allowing visualisation and perturbation of the differentiation process in vitro. We demonstrate that there is dispersal of phosphorylated Lamin A/C to structures throughout the cytoplasm in differentiating keratinocytes. We show that the dispersal of phosphorylated Lamin A/C is Akt1-dependent and these structures are specific for the removal of Lamin A/C from the nuclear lamina; nuclear contents and Lamin B were not present in these structures. Immunoprecipitation identified a group of functionally related Akt1 target proteins involved in Lamin A/C dispersal, including actin, which forms cytoskeletal microfilaments, Arp3, required for actin filament nucleation, and Myh9, a component of myosin IIa, a molecular motor that can translocate along actin filaments. Disruption of actin filament polymerisation, nucleation or myosin IIa activity prevented formation and dispersal of cytoplasmic Lamin A/C structures. Live imaging of keratinocytes expressing fluorescently tagged nuclear proteins showed a nuclear volume reduction step taking less than 40 min precedes final nuclear destruction. Preventing Akt1-dependent Lamin A/C phosphorylation and disrupting cytoskeletal Akt1-associated proteins prevented nuclear volume reduction. We propose keratinocyte nuclear destruction and differentiation requires myosin II activity and the actin cytoskeleton for two intermediate processes: Lamin A/C dispersal and rapid nuclear volume reduction

    Improving ecosystem health in highly altered river basins: a generalized framework and its application to the Mississippi-Atchafalaya River Basin

    Get PDF
    Continued large-scale public investment in declining ecosystems depends on demonstrations of “success”. While the public conception of “success” often focuses on restoration to a pre-disturbance condition, the scientific community is more likely to measure success in terms of improved ecosystem health. Using a combination of literature review, workshops and expert solicitation we propose a generalized framework to improve ecosystem health in highly altered river basins by reducing ecosystem stressors, enhancing ecosystem processes and increasing ecosystem resilience. We illustrate the use of this framework in the Mississippi-Atchafalaya River Basin (MARB) of the central United States (U.S.), by (i) identifying key stressors related to human activities, and (ii) creating a conceptual ecosystem model relating those stressors to effects on ecosystem structure and processes. As a result of our analysis, we identify a set of landscape-level indicators of ecosystem health, emphasizing leading indicators of stressor removal (e.g., reduced anthropogenic nutrient inputs), increased ecosystem function (e.g., increased water storage in the landscape) and increased resilience (e.g., changes in the percentage of perennial vegetative cover). We suggest that by including these indicators, along with lagging indicators such as direct measurements of water quality, stakeholders will be better able to assess the effectiveness of management actions. For example, if both leading and lagging indicators show improvement over time, then management actions are on track to attain desired ecosystem condition. If, however, leading indicators are not improving or even declining, then fundamental challenges to ecosystem health remain to be addressed and failure to address these will ultimately lead to declines in lagging indicators such as water quality. Although our model and indicators are specific to the MARB, we believe that the generalized framework and the process of model and indicator development will be valuable in an array of altered river basins
    corecore