565 research outputs found
PfHPRT: a new biomarker candidate of acute Plasmodium falciparum infection.
Plasmodium falciparum is a protozoan parasite that causes human malaria. This parasitic infection accounts for approximately 655,000 deaths each year worldwide. Most deaths could be prevented by diagnosing and treating malaria promptly. To date, few parasite proteins have been developed into rapid diagnostic tools. We have combined a shotgun and a targeted proteomic strategy to characterize the plasma proteome of Gambian children with severe malaria (SM), mild malaria, and convalescent controls in search of new candidate biomarkers. Here we report four P. falciparum proteins with a high level of confidence in SM patients, namely, PF10_0121 (hypoxanthine phosphoribosyltransferase, pHPRT), PF11_0208 (phosphoglycerate mutase, pPGM), PF13_0141 (lactate dehydrogenase, pLDH), and PF14_0425 (fructose bisphosphate aldolase, pFBPA). We have optimized selected reaction monitoring (SRM) assays to quantify these proteins in individual patients. All P. falciparum proteins were higher in SM compared with mild cases or control subjects. SRM-based measurements correlated markedly with clinical anemia (low blood hemoglobin concentration), and pLDH and pFBPA were significantly correlated with higher P. falciparum parasitemia. These findings suggest that pHPRT is a promising biomarker to diagnose P. falciparum malaria infection. The diagnostic performance of this marker should be validated prospectively
Guiding principles for adolescent web-based portal access policies: Interviews with informatics administrators
BACKGROUND: Web-based patient portals are tools that could support adolescents in managing their health and developing autonomy. However, informatics administrators must navigate competing interests when developing portal access policies for adolescents and their parents.
OBJECTIVE: We aimed to assess the perspectives of informatics administrators on guiding principles for the development of web-based health care portal access policies in adolescent health care.
METHODS: We interviewed informatics administrators from US hospitals with ≥50 dedicated pediatric beds. We performed a thematic analysis of guiding principles for developing and implementing adolescent portal access policies.
RESULTS: We interviewed 65 informatics leaders who represented 63 pediatric hospitals, 58 health care systems, 29 states, and 14,379 pediatric hospital beds. Participants described 9 guiding principles related to three overarching themes: (1) balancing confidentiality and other care needs, (2) balancing simplicity and granularity, and (3) collaborating and advocating. Participants described the central importance of prioritizing the health and safety of the adolescent while also complying with state and federal laws. However, there were differing beliefs about how to prioritize health and safety and what role parents should play in supporting the adolescent\u27s health care. Participants also identified areas where clinicians and institutions can advocate for adolescents, especially with electronic health record vendors and legislators.
CONCLUSIONS: Informatics administrators provided guiding principles for adolescent portal access policies that aimed to balance the competing needs of adolescent confidentiality and the usefulness of the portal. Portal access policies must prioritize the adolescent\u27s health and safety while complying with state and federal laws. However, institutions must determine how to best enact these principles. Institutions and clinicians should strive for consensus on principles to strengthen advocacy efforts with institutional leadership, electronic health record vendors, and lawmakers
Recommended from our members
Tenofovir disoproxil fumarate induces peripheral neuropathy and alters inflammation and mitochondrial biogenesis in the brains of mice.
Mounting evidence suggests that antiretroviral therapy (ART) drugs may contribute to the prevalence of HIV-associated neurological dysfunction. The HIV envelope glycoprotein (gp120) is neurotoxic and has been linked to alterations in mitochondrial function and increased inflammatory gene expression, which are common neuropathological findings in HIV+ cases on ART with neurological disorders. Tenofovir disproxil fumarate (TDF) has been shown to affect neurogenesis in brains of mice and mitochondria in neurons. In this study, we hypothesized that TDF contributes to neurotoxicity by modulating mitochondrial biogenesis and inflammatory pathways. TDF administered to wild-type (wt) and GFAP-gp120 transgenic (tg) mice caused peripheral neuropathy, as indicated by nerve conduction slowing and thermal hyperalgesia. Conversely TDF protected gp120-tg mice from cognitive dysfunction. In the brains of wt and gp120-tg mice, TDF decreased expression of mitochondrial transcription factor A (TFAM). However, double immunolabelling revealed that TFAM was reduced in neurons and increased in astroglia in the hippocampi of TDF-treated wt and gp120-tg mice. TDF also increased expression of GFAP and decreased expression of IBA1 in the wt and gp120-tg mice. TDF increased tumor necrosis factor (TNF) α in wt mice. However, TDF reduced interleukin (IL) 1β and TNFα mRNA in gp120-tg mouse brains. Primary human astroglia were exposed to increasing doses of TDF for 24 hours and then analyzed for mitochondrial alterations and inflammatory gene expression. In astroglia, TDF caused a dose-dependent increase in oxygen consumption rate, extracellular acidification rate and spare respiratory capacity, changes consistent with increased metabolism. TDF also reduced IL-1β-mediated increases in IL-1β and TNFα mRNA. These data demonstrate that TDF causes peripheral neuropathy in mice and alterations in inflammatory signaling and mitochondrial activity in the brain
Constant-time solution to the Global Optimization Problem using Bruschweiler's ensemble search algorithm
A constant-time solution of the continuous Global Optimization Problem (GOP)
is obtained by using an ensemble algorithm. We show that under certain
assumptions, the solution can be guaranteed by mapping the GOP onto a discrete
unsorted search problem, whereupon Bruschweiler's ensemble search algorithm is
applied. For adequate sensitivities of the measurement technique, the query
complexity of the ensemble search algorithm depends linearly on the size of the
function's domain. Advantages and limitations of an eventual NMR implementation
are discussed.Comment: 14 pages, 0 figure
Exact results on spin dynamics and multiple quantum dynamics in alternating spin-1/2 chains with XY-Hamiltonian at high temperatures
We extend the picture of a transfer of nuclear spin-1/2 polarization along a
homogeneous one-dimensional chain with the XY-Hamiltonian to the inhomogeneous
chain with alternating nearest neighbour couplings and alternating Larmor
frequencies. To this end, we calculate exactly the spectrum of the spin-1/2
XY-Hamiltonian of the alternating chain with an odd number of sites. The exact
spectrum of the XY-Hamiltonian is also applied to study the multiple quantum
(MQ) NMR dynamics of the alternating spin-1/2 chain. MQ NMR spectra are shown
to have the MQ coherences of zero and second orders just as in the case
of a homogeneous chain. The intensities of the MQ coherences are calculated.Comment: 10 pages, 4 figure
Variability in spatial distribution of mineral phases in the Lower Bowland Shale, UK, from the mm- to μm-scale: quantitative characterization and modelling
The microstructure of a highly laminated Lower Bowland Shale sample is characterized at the micron-to millimeter scale, to investigate how such characterization can be utilized for microstructure-based modelling of the shale's geomechanical behavior. A mosaic of scanning electron microscope (SEM) back-scattered electron (BSE) images was studied. Mineral and organic content and their anisotropy vary between laminae, with a high variability in fracturing and multi-micrometer aggregates of feldspars, carbonates, quartz and organics. The different microstructural interface types and heterogeneities were located and quantified, demonstrating the microstructural complexity of the Bowland Shale, and defining possible pathways for fracture propagation. A combination of counting-box, dispersion, covariance and 2D mapping approaches were used to determine that the total surface of each lamina is 3 to 11 times larger than the scale of heterogeneities relative to mineral proportion and size. The dispersion approach seems to be the preferential technique for determining the representative elementary area (REA) of phase area fraction for these highly heterogeneous large samples, supported by 2D quantitative mapping of the same parameter. Representative microstructural models were developed using Voronoï tessellation using these characteristic scales. These models encapsulate the microstructural features required to simulate fluid flow through these porous Bowland Shales at the mesoscale
- …