41 research outputs found

    The Environmental Estrogen Bisphenol A Inhibits Estradiol-Induced Hippocampal Synaptogenesis

    Get PDF
    Bisphenol A (BPA) is an estrogenic chemical that is widely used in the manufacture of plastics and epoxy resins. Because BPA leaches out of plastic food and drink containers, as well as the BPA-containing plastics used in dental prostheses and sealants, considerable potential exists for human exposure to this compound. In this article we show that treatment of ovariectomized rats with BPA dose-dependently inhibits the estrogen-induced formation of dendritic spine synapses on pyramidal neurons in the CA1 area of the hippocampus. Significant inhibitory effects of BPA were observed at a dose of only 40 μg/kg, below the current U.S. Environmental Protection Agency reference daily limit for human exposure. Because synaptic remodeling has been postulated to contribute to the rapid effects of estrogen on hippocampus-dependent memory, these data suggest that environmental BPA exposure may interfere with the development and expression of normal sex differences in cognitive function, via inhibition of estrogen-dependent hippocampal synapse formation. It may also exacerbate the impairment of hippocampal function observed during normal aging, as endogenous estrogen production declines

    Sexually Dimorphic Effects of Prenatal Stress on Cognition, Hormonal Responses, and Central Neurotransmitters

    Get PDF
    Exposure to stress during gestation results in physiological and behavioral alterations that persist into adulthood. This study examined the effects of prenatal stress on the postnatal expression of sexually differentiated cognitive, hormonal, and neurochemical profiles in male and female rats. Pregnant dams were subjected to restraint stress three times daily for 45 min during d 14-21 of pregnancy. The offspring of control and prenatally stressed dams were tested for anxiety-related and cognitive behaviors, stress and gonadal steroid hormone levels, as well as monoamines and metabolite levels in selected brain regions. Postnatal testosterone levels (measured at 1 and 5 d) did not differ between controls and prenatally stressed animals. In adulthood, the serum corticosterone response to stress was attenuated in prenatally stressed females, eliminating the sex difference normally observed in this parameter. Prenatally stressed females exhibited higher anxiety levels, evidenced by longer open field entry latencies. Prenatal stress had no effect on object recognition memory, but eliminated the advantage normally seen in the male performance of a spatial memory task. Neurochemical profiles of prenatally stressed females were altered toward the masculine phenotype in the prefrontal cortex, amygdala, and hippocampus. Thus, prenatal stress altered subsequent cognitive, endocrine, and neurochemical responses in a sex-specific manner. These data reinforce the view that prenatal stress affects multiple aspects of brain development, interfering with the expression of normal behavioral, neuroendocrine, and neurochemical sex differences. These data have implications for the effects of prenatal stress on the development of sexually dimorphic endocrine and neurological disorders

    Dissociable cognitive impairments in two strains of transgenic Alzheimer\u27s disease mice revealed by a battery of object-based tests

    Get PDF
    Object recognition tasks detect cognitive deficits in transgenic Alzheimer\u27s disease (AD) mouse models. Object recognition, however, is not a unitary process, and there are many uncharacterized facets of object processing with relevance to AD. We therefore systematically evaluated object processing in 5xFAD and 3xTG AD mice to clarify the nature of object recognition-related deficits. Twelve-month-old male and female 5xFAD and 3xTG mice were assessed on tasks for object identity recognition, spatial recognition, and multisensory object perception. Memory and multisensory perceptual impairments were observed, with interesting dissociations between transgenic AD strains and sex that paralleled neuropathological changes. Overreliance on the widespread object recognition task threatens to slow discovery of potentially significant and clinically relevant behavioural effects related to this multifaceted cognitive function. The current results support the use of carefully designed object-based test batteries to clarify the relationship between object recognition impairments and specific aspects of AD pathology in rodent models

    The Environmental Estrogen Bisphenol A Inhibits Estradiol-Induced Hippocampal Synaptogenesis-3

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "The Environmental Estrogen Bisphenol A Inhibits Estradiol-Induced Hippocampal Synaptogenesis"</p><p>Environmental Health Perspectives 2005;113(6):675-679.</p><p>Published online 24 Feb 2005</p><p>PMCID:PMC1257590.</p><p>This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original DOI.</p
    corecore