22 research outputs found
Long-Time Behavior of Macroscopic Quantum Systems: Commentary Accompanying the English Translation of John von Neumann's 1929 Article on the Quantum Ergodic Theorem
The renewed interest in the foundations of quantum statistical mechanics in
recent years has led us to study John von Neumann's 1929 article on the quantum
ergodic theorem. We have found this almost forgotten article, which until now
has been available only in German, to be a treasure chest, and to be much
misunderstood. In it, von Neumann studied the long-time behavior of macroscopic
quantum systems. While one of the two theorems announced in his title, the one
he calls the "quantum H-theorem", is actually a much weaker statement than
Boltzmann's classical H-theorem, the other theorem, which he calls the "quantum
ergodic theorem", is a beautiful and very non-trivial result. It expresses a
fact we call "normal typicality" and can be summarized as follows: For a
"typical" finite family of commuting macroscopic observables, every initial
wave function from a micro-canonical energy shell so evolves that for
most times in the long run, the joint probability distribution of these
observables obtained from is close to their micro-canonical
distribution.Comment: 34 pages LaTeX, no figures; v2: minor improvements and additions. The
English translation of von Neumann's article is available as arXiv:1003.213
Causal categories: relativistically interacting processes
A symmetric monoidal category naturally arises as the mathematical structure
that organizes physical systems, processes, and composition thereof, both
sequentially and in parallel. This structure admits a purely graphical
calculus. This paper is concerned with the encoding of a fixed causal structure
within a symmetric monoidal category: causal dependencies will correspond to
topological connectedness in the graphical language. We show that correlations,
either classical or quantum, force terminality of the tensor unit. We also show
that well-definedness of the concept of a global state forces the monoidal
product to be only partially defined, which in turn results in a relativistic
covariance theorem. Except for these assumptions, at no stage do we assume
anything more than purely compositional symmetric-monoidal categorical
structure. We cast these two structural results in terms of a mathematical
entity, which we call a `causal category'. We provide methods of constructing
causal categories, and we study the consequences of these methods for the
general framework of categorical quantum mechanics.Comment: 43 pages, lots of figure
Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy
We review HB stars in a broad astrophysical context, including both variable
and non-variable stars. A reassessment of the Oosterhoff dichotomy is
presented, which provides unprecedented detail regarding its origin and
systematics. We show that the Oosterhoff dichotomy and the distribution of
globular clusters (GCs) in the HB morphology-metallicity plane both exclude,
with high statistical significance, the possibility that the Galactic halo may
have formed from the accretion of dwarf galaxies resembling present-day Milky
Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the
second-parameter problem is presented. A technique is proposed to estimate the
HB types of extragalactic GCs on the basis of integrated far-UV photometry. The
relationship between the absolute V magnitude of the HB at the RR Lyrae level
and metallicity, as obtained on the basis of trigonometric parallax
measurements for the star RR Lyrae, is also revisited, giving a distance
modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are
studied. Finally, the conductive opacities used in evolutionary calculations of
low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and
Space Scienc
Reproducibility in the absence of selective reporting : An illustration from large-scale brain asymmetry research
Altres ajuts: Max Planck Society (Germany).The problem of poor reproducibility of scientific findings has received much attention over recent years, in a variety of fields including psychology and neuroscience. The problem has been partly attributed to publication bias and unwanted practices such as p-hacking. Low statistical power in individual studies is also understood to be an important factor. In a recent multisite collaborative study, we mapped brain anatomical left-right asymmetries for regional measures of surface area and cortical thickness, in 99 MRI datasets from around the world, for a total of over 17,000 participants. In the present study, we revisited these hemispheric effects from the perspective of reproducibility. Within each dataset, we considered that an effect had been reproduced when it matched the meta-analytic effect from the 98 other datasets, in terms of effect direction and significance threshold. In this sense, the results within each dataset were viewed as coming from separate studies in an "ideal publishing environment," that is, free from selective reporting and p hacking. We found an average reproducibility rate of 63.2% (SD = 22.9%, min = 22.2%, max = 97.0%). As expected, reproducibility was higher for larger effects and in larger datasets. Reproducibility was not obviously related to the age of participants, scanner field strength, FreeSurfer software version, cortical regional measurement reliability, or regional size. These findings constitute an empirical illustration of reproducibility in the absence of publication bias or p hacking, when assessing realistic biological effects in heterogeneous neuroscience data, and given typically-used sample sizes
Land cover change Scotland from the 1940s to the 1980s
SIGLEAvailable from British Library Document Supply Centre-DSC:99/17533 / BLDSC - British Library Document Supply CentreGBUnited Kingdo