136 research outputs found

    Intercomparisons of Tracker v1.1 and four other ocean particle-tracking software packages in the Regional Ocean Modeling System

    Get PDF
    Particle tracking is widely utilized to study transport features in a range of physical, chemical, and biological processes in oceanography. In this study, a new offline particle-tracking package, Tracker v1.1, is introduced, and its performance is evaluated in comparison to an online Eulerian dye, one online particle-tracking software package, and three offline particle-tracking software packages in a small, high-resolution model domain and a large coarser model domain. It was found that both particle and dye approaches give similar results across different model resolutions and domains when they were tracking the same water mass, as indicated by similar mean advection pathways and spatial distributions of dye and particles. The flexibility of offline particle tracking and its similarity against online dye and online particle tracking make it a useful tool to complement existing ocean circulation models. The new Tracker was shown to be a reliable particle-tracking package to complement the Regional Ocean Modeling System (ROMS) with the advantages of platform independence and speed improvements, especially in large model domains achieved by the nearest-neighbor search algorithm. Lastly, trade-offs of computational efficiency, modifiability, and ease of use that can influence the choice of which package to use are explored. The main value of the present study is that the different particle and dye tracking codes were all run on the same model output or within the model that generated the output. This allows some measure of intercomparison between the different tracking schemes, and we conclude that all choices that make each tracking package unique do not necessarily lead to very different results.</p

    Numerical issues of the Total Exchange Flow (TEF) analysis framework for quantifying estuarine circulation

    Get PDF
    For more than a century, estuarine exchange flow has been quantified by means of the Knudsen relations which connect bulk quantities such as inflow and outflow volume fluxes and salinities. These relations are closely linked to estuarine mixing. The recently developed Total Exchange Flow (TEF) analysis framework, which uses salinity coordinates to calculate these bulk quantities, allows an exact formulation of the Knudsen relations in realistic cases. There are however numerical issues, since the original method does not converge to the TEF bulk values for an increasing number of salinity classes. In the present study, this problem is investigated and the method of dividing salinities, described by MacCready et al. (2018), is mathematically introduced. A challenging yet compact analytical scenario for a well-mixed estuarine exchange flow is investigated for both methods, showing the proper convergence of the dividing salinity method. Furthermore, the dividing salinity method is applied to model results of the Baltic Sea to demonstrate the analysis of realistic exchange flows and exchange flows with more than two layers.</p

    Tidal and groundwater fluxes to a shallow, microtidal estuary : constraining inputs through field observations and hydrodynamic modeling

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Estuaries and Coasts 35 (2012): 1285-1298, doi:10.1007/s12237-012-9515-x.Increased nutrient loading to estuaries has led to eutrophication, degraded water quality, and ecological transformations. Quantifying nutrient loads in systems with significant groundwater input can be difficult due to the challenge of measuring groundwater fluxes. We quantified tidal and freshwater fluxes over an 8-week period at the entrance of West Falmouth Harbor, Massachusetts, a eutrophic, groundwater-fed estuary. Fluxes were estimated from velocity and salinity measurements and a total exchange flow (TEF) methodology. Intermittent cross-sectional measurements of velocity and salinity were used to convert point measurements to cross-sectionally averaged values over the entire deployment (index relationships). The estimated mean freshwater flux (0.19 m3/s) for the 8-week period was mainly due to groundwater input (0.21 m3/s) with contributions from precipitation to the estuary surface (0.026 m3/s) and removal by evaporation (0.048 m3/s). Spring–neap variations in freshwater export that appeared in shorter-term averages were mostly artifacts of the index relationships. Hydrodynamic modeling with steady groundwater input demonstrated that while the TEF methodology resolves the freshwater flux signal, calibration of the index– salinity relationships during spring tide conditions only was responsible for most of the spring–neap signal. The mean freshwater flux over the entire period estimated from the combination of the index-velocity, index–salinity, and TEF calculations were consistent with the model, suggesting that this methodology is a reliable way of estimating freshwater fluxes in the estuary over timescales greater than the spring– neap cycle. Combining this type of field campaign with hydrodynamic modeling provides guidance for estimating both magnitude of groundwater input and estuarine storage of freshwater and sets the stage for robust estimation of the nutrient load in groundwater.Funding was provided by the USGS Coastal and Marine Geology Program and by National Science Foundation Award #0420575 from the Biocomplexity/Coupled Biogeochemical Cycles Program

    River Influences on Shelf Ecosystems: Introduction and Synthesis

    Get PDF
    River Influences on Shelf Ecosystems (RISE) is the first comprehensive interdisciplinary study of the rates and dynamics governing the mixing of river and coastal waters in an eastern boundary current system, as well as the effects of the resultant plume on phytoplankton standing stocks, growth and grazing rates, and community structure. The RISE Special Volume presents results deduced from four field studies and two different numerical model applications, including an ecosystem model, on the buoyant plume originating from the Columbia River. This introductory paper provides background information on variability during RISE field efforts as well as a synthesis of results, with particular attention to the questions and hypotheses that motivated this research. RISE studies have shown that the maximum mixing of Columbia River and ocean water occurs primarily near plume liftoff inside the estuary and in the near field of the plume. Most plume nitrate originates from upwelled shelf water, and plume phytoplankton species are typically the same as those found in the adjacent coastal ocean. River-supplied nitrate can help maintain the ecosystem during periods of delayed upwelling. The plume inhibits iron limitation, but nitrate limitation is observed in aging plumes. The plume also has significant effects on rates of primary productivity and growth (higher in new plume water) and microzooplankton grazing (lower in the plume near field and north of the river mouth); macrozooplankton concentration (enhanced at plume fronts); offshelf chlorophyll export; as well as the development of a chlorophyll ?shadow zone? off northern Oregon

    Trajectory generation for autonomous soaring UAS

    Get PDF
    This article was published in the International Journal of Automation and Computing [© Springer Verlag and the Institute of Automation, Chinese Academy of Sciences ]. The definitive version is available at: http://link.springer.com/article/10.1007/s11633-012-0641-5As unmanned aerial vehicles are expected to do more and more advanced tasks, improved range and persistence is required. This paper presents a method of using shallow layer cumulus convection to extend the range and duration of small unmanned aerial vehicles. A simulation model of an X-models XCalubur electric motor-glider is used in combination with a refined 4D parametric thermal model to simulate soaring flight. The parametric thermal model builds on previous successful models with refinements to more accurately describe the weather in northern Europe. The implementation of the variation of the MacCready setting is discussed. Methods for generating efficient trajectories are evaluated and recommendations are made regarding implementation
    corecore