2,204 research outputs found

    Genome Stability: A Self-Sufficient DNA Repair Machine

    Get PDF
    AbstractThe repair of DNA double-strand breaks often requires the broken ends to be processed prior to religation. New results describe a bacterial enzyme with processing and rejoining activities encoded in a single polypeptide chain

    Genome Sequencing: And Then There Were Six

    Get PDF
    AbstractThe genome of the fission yeast Schizosaccharomyces pombe has been sequenced, bringing the number of sequenced eukaryotic genomes to six. Analysis of the sequence predicts only 4824 protein coding genes, the smallest number yet recorded for a free-living eukaryote

    Biochemical characterisation of LigN, an NAD(+)-dependent DNA ligase from the halophilic euryarchaeon Haloferax volcanii that displays maximal in vitro activity at high salt concentrations

    Get PDF
    BACKGROUND: DNA ligases are required for DNA strand joining in all forms of cellular life. NAD(+)-dependent DNA ligases are found primarily in eubacteria but also in some eukaryotic viruses, bacteriophage and archaea. Among the archaeal NAD(+)-dependent DNA ligases is the LigN enzyme of the halophilic euryarchaeon Haloferax volcanii, the gene for which was apparently acquired by Hfx.volcanii through lateral gene transfer (LGT) from a halophilic eubacterium. Genetic studies show that the LGT-acquired LigN enzyme shares an essential function with the native Hfx.volcanii ATP-dependent DNA ligase protein LigA. RESULTS: To characterise the enzymatic properties of the LigN protein, wild-type and three mutant forms of the LigN protein were separately expressed in recombinant form in E.coli and purified to apparent homogeneity by immobilised metal ion affinity chromatography (IMAC). Non-isotopic DNA ligase activity assays using λ DNA restriction fragments with 12 bp cos cohesive ends were used to show that LigN activity was dependent on addition of divalent cations and salt. No activity was detected in the absence of KCl, whereas maximum activity could be detected at 3.2 M KCl, close to the intracellular KCl concentration of Hfx.volcanii cells. CONCLUSION: LigN is unique amongst characterised DNA ligase enzymes in displaying maximal DNA strand joining activity at high (> 3 M) salt levels. As such the LigN enzyme has potential both as a novel tool for biotechnology and as a model enzyme for studying the adaptation of proteins to high intracellular salt levels

    ATP-dependent DNA ligases

    Get PDF
    By catalyzing the joining of breaks in the phosphodiester backbone of duplex DNA, DNA ligases play a vital role in the diverse processes of DNA replication, recombination and repair. Three related classes of ATP-dependent DNA ligase are readily apparent in eukaryotic cells. Enzymes of each class comprise catalytic and non-catalytic domains together with additional domains of varying function. DNA ligase I is required for the ligation of Okazaki fragments during lagging-strand DNA synthesis, as well as for several DNA-repair pathways; these functions are mediated, at least in part, by interactions between DNA ligase I and the sliding-clamp protein PCNA. DNA ligase III, which is unique to vertebrates, functions both in the nucleus and in mitochondria. Two distinct isoforms of this enzyme, differing in their carboxy-terminal sequences, are produced by alternative splicing: DNA ligase IIIα has a carboxy-terminal BRCT domain that interacts with the mammalian DNA-repair factor XrccI, but both α and β isoforms have an amino-terminal zinc-finger motif that appears to play a role in the recognition of DNA secondary structures that resemble intermediates in DNA metabolism. DNA ligase IV is required for DNA non-homologous end joining pathways, including recombination of the V(D)J immunoglobulin gene segments in cells of the mammalian immune system. DNA ligase IV forms a tight complex with Xrcc4 through an interaction motif located between a pair of carboxy-terminal BRCT domains in the ligase. Recent structural studies have shed light on the catalytic function of DNA ligases, as well as illuminating protein-protein interactions involving DNA ligases IIIα and IV

    Mapping and mutation of the conserved DNA polymerase interaction motif (DPIM) located in the C-terminal domain of fission yeast DNA polymerase δ subunit Cdc27

    Get PDF
    BACKGROUND: DNA polymerases α and δ play essential roles in the replication of chromosomal DNA in eukaryotic cells. DNA polymerase α (Pol α)-primase is required to prime synthesis of the leading strand and each Okazaki fragment on the lagging strand, whereas DNA polymerase δ (Pol δ) is required for the elongation stages of replication, a function it appears capable of performing on both leading and lagging strands, at least in the absence of DNA polymerase ε (Pol ε). RESULTS: Here it is shown that the catalytic subunit of Pol α, Pol1, interacts with Cdc27, one of three non-catalytic subunits of fission yeast Pol δ, both in vivo and in vitro. Pol1 interacts with the C-terminal domain of Cdc27, at a site distinct from the previously identified binding sites for Cdc1 and PCNA. Comparative protein sequence analysis identifies a protein sequence motif, called the DNA polymerase interaction motif (DPIM), in Cdc27 orthologues from a wide variety of eukaryotic species, including mammals. Mutational analysis shows that the DPIM in fission yeast Cdc27 is not required for effective DNA replication, repair or checkpoint function. CONCLUSIONS: The absence of any detectable phenotypic consequences arising from mutation of the DPIM suggests that despite its evolutionary conservation, the interaction between the two polymerases mediated by this motif is a non-essential one

    Tandem affinity purification of exosome and replication factor C complexes from the non-human infectious kinetoplastid parasite Crithidia fasciculata

    Get PDF
    This work was supported through the Global Health Implementation programme at the University of St Andrews.Kinetoplastid parasites are responsible for a range of diseases with significant global impact. Trypanosoma brucei and Trypanosoma cruzi cause human African trypanosomiasis and Chagas disease, respectively, while various Leishmania species are responsible for cutaneous, mucocutaneous and visceral leishmaniasis. Understanding the biology of these organisms is key for effective diagnosis, prophylaxis and treatment. The insect parasite Crithidia fasciculata offers a safe and low-cost alternative for studies of kinetoplastid biology. C. fasciculata does not infect humans, can be cultured to high yields in inexpensive serum-free medium in a standard laboratory, and has a completely sequenced publically available genome. Taking advantage of these features, however, requires the adaptation of existing methods of analysis to C. fasciculata. Tandem affinity purification is a widely used method that allows for the rapid purification of intact protein complexes under native conditions. Here we report the application of tandem affinity purification to C. fasciculata for the first time, demonstrating the effectiveness of the technique by purifying both the intact exosome and replication factor C complexes. Adding tandem affinity purification to the C. fasciculata toolbox significantly enhances the utility of this excellent model system.PostprintPeer reviewe

    Do temperature changes cause eczema flares? An English cohort study.

    Get PDF
    BACKGROUND: It is unclear if ambient temperature changes affect eczema. It is also unclear if people with worse disease are more susceptible to weather-related flares, or specific types of emollient offer protection. Substantiating these links may help inform action plans and patients self-management. OBJECTIVE: To investigate the effect of short-term temperature variations on eczema symptoms in children. METHODS: Data from a UK cohort of 519 children (6 months-12 years) with at least mild eczema, participating in a randomised trial comparing four types of emollients on eczema symptoms, were combined with observed temperature data from the Hadley Centre's Integrated Surface Database.Hot & cold weeks were defined by average regional temperature >75th or <25th percentile, January 2018-February 2020. Eczema flares were defined as ≥3 point change in patient-oriented eczema measure (POEM). Random effects logistic regression models were used to estimate the odds ratios of flares in hot & cold weeks (reference group: temperate weeks). The likelihood ratio test assessed for evidence of effect modification by disease severity and emollient type. RESULTS: The baseline mean age was 4.9 years (SD 3.2) and POEM score was 9.2 (SD 5.5), indicating moderate eczema. 90% of participants lived within 20 km of their nearest weather station. From the 519 participants there were 6,796 consecutively paired POEMs and 1,082 flares.Seasonal variation in POEM scores was observed, suggesting symptoms worsening with colder weather in winter and improving with warmer weather in summer. Odds ratios of flares were: 1.15 (p = 0.136, 95%CI 0.96-1.39) in cold weeks, 0.85 (p = 0.045, 95%CI 0.72-1.00) in hot weeks. Likelihood ratio test showed no evidence of this differing by disease severity (p = 0.53) or emollient type used (p = 0.55). CONCLUSIONS: Our findings are consistent with previous studies demonstrating either improvements in eczema symptoms or reduced flares in hot weather. Worse disease and different emollient types did not increase susceptibility or provide protection against temperature changes. Further work should investigate the role of sunlight, humidity, air pollution and other environmental factors

    Contrasting effects of Elg1–RFC and Ctf18–RFC inactivation in the absence of fully functional RFC in fission yeast

    Get PDF
    Proliferating cell nuclear antigen loading onto DNA by replication factor C (RFC) is a key step in eukaryotic DNA replication and repair processes. In this study, the C-terminal domain (CTD) of the large subunit of fission yeast RFC is shown to be essential for its function in vivo. Cells carrying a temperature-sensitive mutation in the CTD, rfc1-44, arrest with incompletely replicated chromosomes, are sensitive to DNA damaging agents, are synthetically lethal with other DNA replication mutants, and can be suppressed by mutations in rfc5. To assess the contribution of the RFC-like complexes Elg1–RFC and Ctf18–RFC to the viability of rfc1-44, genes encoding the large subunits of these complexes have been deleted and overexpressed. Inactivation of Ctf18–RFC by the deletion of ctf18(+), dcc1(+) or ctf8(+) is lethal in an rfc1-44 background showing that full Ctf18–RFC function is required in the absence of fully functional RFC. In contrast, rfc1-44 elg1Δ cells are viable and overproduction of Elg1 in rfc1-44 is lethal, suggesting that Elg1–RFC plays a negative role when RFC function is inhibited. Consistent with this, the deletion of elg1(+) is shown to restore viability to rfc1-44 ctf18Δ cells

    The one dimensional Kondo lattice model at partial band filling

    Full text link
    The Kondo lattice model introduced in 1977 describes a lattice of localized magnetic moments interacting with a sea of conduction electrons. It is one of the most important canonical models in the study of a class of rare earth compounds, called heavy fermion systems, and as such has been studied intensively by a wide variety of techniques for more than a quarter of a century. This review focuses on the one dimensional case at partial band filling, in which the number of conduction electrons is less than the number of localized moments. The theoretical understanding, based on the bosonized solution, of the conventional Kondo lattice model is presented in great detail. This review divides naturally into two parts, the first relating to the description of the formalism, and the second to its application. After an all-inclusive description of the bosonization technique, the bosonized form of the Kondo lattice hamiltonian is constructed in detail. Next the double-exchange ordering, Kondo singlet formation, the RKKY interaction and spin polaron formation are described comprehensively. An in-depth analysis of the phase diagram follows, with special emphasis on the destruction of the ferromagnetic phase by spin-flip disorder scattering, and of recent numerical results. The results are shown to hold for both antiferromagnetic and ferromagnetic Kondo lattice. The general exposition is pedagogic in tone.Comment: Review, 258 pages, 19 figure

    Rapid regulation of protein activity in fission yeast

    Get PDF
    Background: The fission yeast Schizosaccharomyces pombe is widely-used as a model organism for the study of a broad range of eukaryotic cellular processes such as cell cycle, genome stability and cell morphology. Despite the availability of extensive set of genetic, molecular biological, biochemical and cell biological tools for analysis of protein function in fission yeast, studies are often hampered by the lack of an effective method allowing for the rapid regulation of protein level or protein activity. Results: In order to be able to regulate protein function, we have made use of a previous finding that the hormone binding domain of steroid receptors can be used as a regulatory cassette to subject the activity of heterologous proteins to hormonal regulation. The approach is based on fusing the protein of interest to the hormone binding domain (HBD) of the estrogen receptor (ER). The HBD tag will attract the Hsp90 complex, which can render the fusion protein inactive. Upon addition of estradiol the protein is quickly released from the Hsp90 complex and thereby activated. We have tagged and characterised the induction of activity of four different HBD-tagged proteins. Here we show that the tag provided the means to effectively regulate the activity of two of these proteins. Conclusion: The estradiol-regulatable hormone binding domain provides a means to regulate the function of some, though not all, fission yeast proteins. This system may result in very quick and reversible activation of the protein of interest. Therefore it will be a powerful tool and it will open experimental approaches in fission yeast that have previously not been possible. Since fission yeast is a widely-used model organism, this will be valuable in many areas of research
    • …
    corecore