2,697 research outputs found

    Charitable Giving Report: How Nonprofit Fundraising Performed in 2013

    Get PDF
    The Charitable Giving Report, derived from The Blackbaud Index, includes overall giving data from 4,129 nonprofit organizations representing 12.5billionintotalfundraisingfrom2013.TheReportalsoincludesonlinegivingdatafrom3,359nonprofitsrepresenting12.5 billion in total fundraising from 2013. The Report also includes online giving data from 3,359 nonprofits representing 1.7 billion in online fundraising from 2013. This year's report features the addition of overall charitable giving data from 985 organizations and online giving data from 778 organizations

    Effect of annealing on glassy dynamics and non-Fermi liquid behavior in UCu_4Pd

    Full text link
    Longitudinal-field muon spin relaxation (LF-muSR) experiments have been performed in unannealed and annealed samples of the heavy-fermion compound UCu_4Pd to study the effect of disorder on non-Fermi liquid behavior in this material. The muon spin relaxation functions G(t,H) obey the time-field scaling relation G(t,H) = G(t/H^gamma) previously observed in this compound. The observed scaling exponent gamma = 0.3 pm 0.1, independent of annealing. Fits of the stretched-exponential relaxation function G(t) = exp[-(Lambda t)^K] to the data yielded stretching exponentials K < 1 for all samples. Annealed samples exhibited a reduction of the relaxation rate at low temperatures, indicating that annealing shifts fluctuation noise power to higher frequencies. There was no tendency of the inhomogeneous spread in rates to decrease with annealing, which modifies but does not eliminate the glassy spin dynamics reported previously in this compound. The correlation with residual resistivity previously observed for a number of NFL heavy-electron materials is also found in the present work.Comment: 4 pages, 3 figures, submitted to 10th International Conference on Muon Spin Rotation, Relaxation, and Resonance, Oxford, UK, August 200

    Susceptibility inhomogeneity and non-Fermi liquid behavior in UCu_{5-x}Pt_x

    Full text link
    Transverse-field muSR shifts and relaxation rates have been measured in the non-Fermi liquid (NFL) alloy system UCu_{5-x}Pt_x, x = 1.0, 1.5, and 2.5. At low temperatures the fractional spread in Knight shifts delta K/K approx deltachi/chi is gtrsim 2 for x = 1, but is only half this value for x = 1.5 and 2.5. In a disorder-driven scenario where the NFL behavior is due to a broadly distributed (Kondo or Griffiths-phase cluster) characteristic energy E, our results indicate that delta E/E_{rm av} approx (delta K/K)_{T=0} is similar for UCu_{5-x}Pd_x (x = 1 and 1.5) and UCu_4Pt, but is reduced for UCu_{5-x}Pt_x, x = 1.5 and 2.5. This reduction is due to a marked increase of E with increasing x; the spread delta E is found to be roughly independent of x. Our results correlate with the observed suppression of other NFL anomalies for x > 1 in UCu_{5-x}Pt_x but not in UCu_{5-x}Pd_x, and are further evidence for the importance of disorder in the NFL behavior of both these alloy systems.Comment: 4 pages, 2 figures, submitted to 10th International Conference on Muon Spin Rotation, Relaxation, and Resonance, Oxford, UK, August 200

    Glassy Spin Dynamics in Non-Fermi-Liquid UCu_{5-x}Pd_x, x = 1.0 and 1.5

    Full text link
    Local f-electron spin dynamics in the non-Fermi-liquid heavy-fermion alloys UCu_{5-x}Pd_x, x = 1.0 and 1.5, have been studied using muon spin-lattice relaxation. The sample-averaged asymmetry function Gbar(t) indicates strongly inhomogeneous spin fluctuations, and exhibits the scaling Gbar(t,H) = Gbar(t/H^\gamma) expected from glassy dynamics. At 0.05 K \gamma(x=1.0) = 0.35 \pm 0.1, but \gamma(x=1.5) = 0.7 \pm 0.1. This is in contrast to inelastic neutron scattering results, which yield \gamma = 0.33 for both concentrations. There is no sign of static magnetism \gtrsim 10^{-3} \mu_B/U ion in either material above 0.05 K. Our results strongy suggest that both alloys are quantum spin glasses.Comment: 4 pages, 4 figures, to be published in Physical Review Letter

    Preparing Students for Success on Examinations: Readiness Assurance Tests in a Graduate-Level Statistics Course

    Get PDF
    Formative feedback is one way to foster students' readiness for statistics examinations. The use of Readiness Assurance Tests was examined as an educational intervention in which feedback was provided for both correct and incorrect responses in a graduate-level statistics course. Examination scores in the intervention group ( n = 56) were compared with those in a control group ( n = 42). Intervention group examination scores significantly improved from 75.92 ± 14.52 on the Readiness Assurance Test to 90.06 ± 7.06, p < .001, on the midterm, and final examination scores improved from 78.23 ± 17.29 to 85.6 ± 6.98, p = .002. Intervention group midterm scores were significantly higher than those of the control group (90.06 ± 7.06 versus 79.7 ± 11.6, p < .001); however, no differences were found between the groups on the final examination (85.35 ± 9.46 versus 85.6 ± 6.98, p = .91). Use of Readiness Assurance Tests was an effective modality to increase student self-efficacy, learning experience, and, relative to a control group, midterm examination performance in statistic

    Susceptibility Inhomogeneity and Non-Fermi-Liquid Behavior in Ce(Ru_{0.5}Rh_{0.5})_2Si_2

    Full text link
    Magnetic susceptibility and muon spin rotation (\muSR) experiments have been carried out to study the effect of structural disorder on the non-Fermi-liquid (NFL) behavior of the heavy-fermion alloy Ce(Ru_{0.5}Rh_{0.5})_2Si_2. Analysis of the bulk susceptibility in the framework of disorder-driven Griffiths-phase and Kondo-disorder models for NFL behavior yields relatively narrow distributions of characteristic spin fluctuation energies, in agreement with \muSR linewidths that give the inhomogeneous spread in susceptibility. \muSR and NMR data both indicate that disorder explains the "nearly NFL" behavior observed above \sim2 K, but does not dominate the NFL physics found at low temperatures and low magnetic fields.Comment: 6 pages, 4 figures, REVTeX, submitted to Phys. Rev.

    NMR Detection of Temperature-Dependent Magnetic Inhomogeneities in URu2Si2

    Full text link
    We present 29Si-NMR relaxation and spectral data in URu2Si2. Our echo-decay experiments detect slowly fluctuating magnetic field gradients. In addition, we find that the echo-decay shape (time dependence) varies with temperature T and its rate behaves critically near the Neel temperature TN, indicating a correlation between the gradient fluctuations and the transition to small-moment order. T-dependent broadening contributions become visible below 100 Kelvin and saturate somewhat above TN, remaining saturated at lower temperatures. Together, the line width and shift suggest partial lattice distortions below TN. We propose an intrinsic minority phase below TNT_{\rm N} and compare our results with one of the current theoretical models.Comment: 2 pages RevTeX, 1 figure, SCES 99-Japan, to appear in Physica

    Disorder, inhomogeneity and spin dynamics in f-electron non-Fermi liquid systems

    Full text link
    Muon spin rotation and relaxation (μ\muSR) experiments have yielded evidence that structural disorder is an important factor in many f-electron-based non-Fermi-liquid (NFL) systems. Disorder-driven mechanisms for NFL behaviour are suggested by the observed broad and strongly temperature-dependent μ\muSR (and NMR) linewidths in several NFL compounds and alloys. Local disorder-driven theories (Kondo disorder, Griffiths-McCoy singularity) are, however, not capable of describing the time-field scaling seen in muon spin relaxation experiments, which suggest cooperative and critical spin fluctuations rather than a distribution of local fluctuation rates. A strong empirical correlation is established between electronic disorder and slow spin fluctuations in NFL materialsComment: 24 pages, 15 figures, submitted to J. Phys.: Condens. Matte

    Screening of point charge impurities in highly anisotropic metals: application to μ+\mu^+ spin relaxation in underdoped cuprates

    Full text link
    We calculate the screening charge density distribution due to a point charge, such as that of a positive muon (μ+\mu^+), placed between the planes of a highly anisotropic layered metal. In underdoped hole cuprates the screening charge converts the charge density in the metallic-plane unit cells in the vicinity of the μ+\mu^+ to nearly its value in the insulating state. The current-loop ordered state observed by polarized neutron diffraction then vanishes in such cells, and also in nearby cells over a distance of order the intrinsic correlation length of the loop-ordered state. This in turn strongly suppresses the loop-current field at the μ+\mu^+ site. We estimate this suppressed field in underdoped YBa2_2Cu3_3O6+x_{6+x} and La2x_{2-x}Srx_xCuO4_4, and find consistency with the observed 0.2--0.3 G field in the former case and the observed upper bound of \sim0.2 G in the latter case. This resolves the controversy between the neutron diffraction and μ\muSR experiments. The screening calculation also has relevance for the effect of other charge impurities in the cuprates, such as the dopants themselves

    59Co-NQR study on superconducting NaxCoO2.yH2O

    Full text link
    Layered Co oxide NaxCoO2.yH2O with a superconducting transition temperature Tc =4.5 K has been studied by 59Co NQR. The nuclear spin relaxation rate 1/59T1 is nearly proportional to temperature T in the normal state. In the superconducting state, it exhibits the coherence peak and decreases with decreasing T below ~0.8Tc. Detailed comparison of the 1/T1T values and the magnetic susceptibilities between NaxCoO2.yH2O and NaxCoO2 implies that the metallic state of the former system is closer to a ferromagnetic phase than that of the latter. These experimental results impose a restriction on the mechanism of the superconductivity.Comment: 7 pages, 5 figures. to be published in J. Phys. Soc. Jpn. 72 (2003) No.
    corecore