57 research outputs found

    In Situ Detection of Strong Langmuir Turbulence Processes in Solar Type III Radio Bursts

    Get PDF
    The high time resolution observations obtained by the WAVES experiment of the STEREO spacecraft in solar type III radio bursts show that Langmuir waves often occur as intense localized wave packets. These wave packets are characterized by short durations of only a few ms and peak intensities, which well exceed the supersonic modulational instability (MI) thresholds. These timescales and peak intensities satisfy the criterion of the solitons collapsed to spatial scales of a few hundred Debye lengths. The spectra of these wave packets consist of primary spectral peaks corresponding to beam-resonant Langmuir waves, two or more sidebands corresponding to down-shifted and up-shifted daughter Langmuir waves, and low frequency enhancements below a few hundred Hz corresponding to daughter ion sound waves. The frequencies and wave numbers of these spectral components satisfy the resonance conditions of the modulational instability (MI). Moreover, the tricoherences, computed using trispectral analysis techniques show that these spectral components are coupled to each other with a high degree of coherency as expected of the MI type of four wave interactions. The high intensities, short scale lengths, sideband spectral structures and low frequency spectral enhancements and, high levels of tricoherences amongst the spectral components of these wave packets provide unambiguous evidence for the supersonic MI and related strong turbulence processes in type III radio bursts. The implication of these observations include: (1) the MI and related strong turbulence processes often occur in type III source regions, (2) the strong turbulence processes probably play very important roles in beam stabilization as well as conversion of Langmuir waves into escaping radiation at the fundamental and second harmonic of the electron plasma frequency, fpe, and (3) the Langmuir collapse probably follows the route of MI in type III radio bursts

    Antenna Deployment for a Pathfinder Lunar Radio Observatory

    Get PDF
    A first step in the development of a large radio observatory on the moon for cosmological or other astrophysical and planetary goals is to deploy a few antennas as a pathfinder mission. In this presentation, we describe a mechanism being developed to deploy such antennas from a small craft, such as a Google Lunar X-prize lander. The antenna concept is to deposit antennas and leads on a polyimide film, such as Kapton, and to unroll the film on the lunar surface. The deployment technique utilized is to launch an anchor which pulls a double line from a reel at the spacecraft. Subsequently, the anchor is set by catching on the surface or collecting sufficient regolith. A motor then pulls in one end of the line, pulling the film off of its roller onto the lunar surface. Detection of a low frequency cutoff of the galactic radio background or of solar radio bursts by such a system would determine the maximum lunar ionospheric density at the time of measurement. The current design and testing, including videos of the deployment, will be presented. These activities are funded in part by the NASA Lunar Science Institute as an activity of the Lunar University Network for Astrophysical Research (LUNAR) consortium. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration

    High Angular Resolution Imaging of Solar Radio Bursts from the Lunar Surface

    Get PDF
    Locating low frequency radio observatories on the lunar surface has a number of advantages, including positional stability and a very low ionospheric radio cutoff. Here, we describe the Radio Observatory on the lunar Surface for Solar studies (ROLSS), a concept for a low frequency, radio imaging interferometric array designed to study particle acceleration in the corona and inner heliosphere. ROLSS would be deployed during an early lunar sortie or by a robotic rover as part of an unmanned landing. The preferred site is on the lunar near side to simplify the data downlink to Earth. The prime science mission is to image type II and type III solar radio bursts with the aim of determining the sites at and mechanisms by which the radiating particles are accelerated. Secondary science goals include constraining the density of the lunar ionosphere by measuring the low radio frequency cutoff of the solar radio emissions or background galactic radio emission, measuring the flux, particle mass, and arrival direction of interplanetary and interstellar dust, and constraining the low energy electron population in astrophysical sources. Furthermore, ROLSS serves a pathfinder function for larger lunar radio arrays. Key design requirements on ROLSS include the operational frequency and angular resolution. The electron densities in the solar corona and inner heliosphere are such that the relevant emission occurs below 10 M Hz, essentially unobservable from Earth's surface due to the terrestrial ionospheric cutoff. Resolving the potential sites of particle acceleration requires an instrument with an angular resolution of at least 2 deg at 10 MHz, equivalent to a linear array size of approximately one kilometer. The major components of the ROLSS array are 3 antenna arms, each of 500 m length, arranged in a Y formation, with a central electronics package (CEP) at their intersection. Each antenna arm is a linear strip of polyimide film (e.g., Kapton(TradeMark)) on which 16 single polarization dipole antennas are located by depositing a conductor (e.g., silver). The arms also contain transmission lines for carrying the radio signals from the science antennas to the CEP. Operations would consist of data acquisition during the lunar day, with data downlinks to Earth one or more times every 24 hours

    Earth-Affecting Solar Causes Observatory (EASCO): A mission at the Sun-Earth L5

    Full text link
    Coronal mass ejections (CMEs) and corotating interaction regions (CIRs) as well as their source regions are important because of their space weather consequences. The current understanding of CMEs primarily comes from the Solar and Heliospheric Observatory (SOHO) and the Solar Terrestrial Relations Observatory (STEREO) missions, but these missions lacked some key measurements: STEREO did not have a magnetograph; SOHO did not have in-situ magnetometer. SOHO and other imagers such as the Solar Mass Ejection Imager (SMEI) located on the Sun-Earth line are also not well-suited to measure Earth-directed CMEs. The Earth-Affecting Solar Causes Observatory (EASCO) is a proposed mission to be located at the Sun-Earth L5 that overcomes these deficiencies. The mission concept was recently studied at the Mission Design Laboratory (MDL), NASA Goddard Space Flight Center, to see how the mission can be implemented. The study found that the scientific payload (seven remote-sensing and three in-situ instruments) can be readily accommodated and can be launched using an intermediate size vehicle; a hybrid propulsion system consisting of a Xenon ion thruster and hydrazine has been found to be adequate to place the payload at L5. Following a 2-year transfer time, a 4-year operation is considered around the next solar maximum in 2025.Comment: 12 pages, 6 figures, 2 table

    Observations of Energetic-particle Population Enhancements along Intermittent Structures near the Sun from the Parker Solar Probe

    Get PDF
    Observations at 1 au have confirmed that enhancements in measured energetic-particle (EP) fluxes are statistically associated with "rough" magnetic fields, i.e., fields with atypically large spatial derivatives or increments, as measured by the Partial Variance of Increments (PVI) method. One way to interpret this observation is as an association of the EPs with trapping or channeling within magnetic flux tubes, possibly near their boundaries. However, it remains unclear whether this association is a transport or local effect; i.e., the particles might have been energized at a distant location, perhaps by shocks or reconnection, or they might experience local energization or re-acceleration. The Parker Solar Probe (PSP), even in its first two orbits, offers a unique opportunity to study this statistical correlation closer to the corona. As a first step, we analyze the separate correlation properties of the EPs measured by the Integrated Science Investigation of the Sun (IS⊙IS) instruments during the first solar encounter. The distribution of time intervals between a specific type of event, i.e., the waiting time, can indicate the nature of the underlying process. We find that the IS⊙IS observations show a power-law distribution of waiting times, indicating a correlated (non-Poisson) distribution. Analysis of low-energy (~15 – 200 keV/nuc) IS⊙IS data suggests that the results are consistent with the 1 au studies, although we find hints of some unexpected behavior. A more complete understanding of these statistical distributions will provide valuable insights into the origin and propagation of solar EPs, a picture that should become clear with future PSP orbits

    An Estimate of the Dust Pickup Currents at Enceladus

    Get PDF
    The electrodynamic environment at Enceladus is often assumed to be driven exclusively by ions produced from the moon's south polar plume. In this presentation, we demonstrate that acceleration of moon-originating submicron dust by the reduced co-rotating E-field is capable of creating a substantial current perpendicular to the magnetic field. This pickup current may be comparable to the ion pickup current, and may be large enough to deflect the local magnetic field. We will analyze observations from the Langmuir Probe that is a component of Cassini's Radio and Plasma Wave Science (RPWS) package, along with associated plasma waves that reveal electron concentrations. We will especially examine the observations from the 12 March 2008 spacecraft passage by the body, where the spacecraft was moving primarily southward taking it along-side the jet/plume emitted from the south pole of the moon. The region of dust pickup is found to originate about 3-5 Enceladus radii northward of the moon, and extends to at least 10 radii southward of the moon. We attempt to quantify the dust pickup current and describe the effect the current might have on the overall magnetoplasma and E-field environment in the vicinity of the body

    Small-scale Magnetic Flux Ropes in the First two Parker Solar Probe Encounters

    Full text link
    Small-scale magnetic flux ropes (SFRs) are a type of structures in the solar wind that possess helical magnetic field lines. In a recent report (Chen & Hu 2020), we presented the radial variations of the properties of SFR from 0.29 to 8 au using in situ measurements from the Helios, ACE/Wind, Ulysses, and Voyager spacecraft. With the launch of the Parker Solar Probe (PSP), we extend our previous investigation further into the inner heliosphere. We apply a Grad-Shafranov-based algorithm to identify SFRs during the first two PSP encounters. We find that the number of SFRs detected near the Sun is much less than that at larger radial distances, where magnetohydrodynamic (MHD) turbulence may act as the local source to produce these structures. The prevalence of Alfvenic structures significantly suppresses the detection of SFRs at closer distances. We compare the SFR event list with other event identification methods, yielding a dozen well-matched events. The cross-section maps of two selected events confirm the cylindrical magnetic flux rope configuration. The power-law relation between the SFR magnetic field and heliocentric distances seems to hold down to 0.16 au.Comment: Accepted by ApJ on 2020 Sep 1

    On the Evolution of the Anisotropic Scaling of Magnetohydrodynamic Turbulence in the Inner Heliosphere

    Get PDF
    We analyze a merged Parker Solar Probe (PSP) and Solar Orbiter (SO) data set covering heliocentric distances 13 R⊙ ≲ R ≲ 220 R⊙ to investigate the radial evolution of power and spectral index anisotropy in the wavevector space of solar wind turbulence. Our results show that anisotropic signatures of turbulence display a distinct radial evolution when fast, Vsw ≥ 400 km s−1, and slow, Vsw ≤ 400 km s−1, wind streams are considered. The anisotropic properties of slow wind in Earth orbit are consistent with a "critically balanced" cascade, but both spectral index anisotropy and power anisotropy diminish with decreasing heliographic distance. Fast streams are observed to roughly retain their near-Sun anisotropic properties, with the observed spectral index and power anisotropies being more consistent with a "dynamically aligned" type of cascade, though the lack of extended fast wind intervals makes it difficult to accurately measure the anisotropic scaling. A high-resolution analysis during the first perihelion of PSP confirms the presence of two subranges within the inertial range, which may be associated with the transition from weak to strong turbulence. The transition occurs at κdi ≈ 6 × 10−2 and signifies a shift from −5/3 to −2 and from −3/2 to −1.57 scaling in parallel and perpendicular spectra, respectively. Our results provide strong observational constraints for anisotropic theories of MHD turbulence in the solar wind
    • …
    corecore