79 research outputs found

    Design of a lab scale direct-filtration system and its application in process lab

    Get PDF
    The Environmental Process and Simulation Center (EPSC) at Michigan Technological University started accommodating laboratories for an Environmental Engineering senior level class CEE 4509 Environmental Process and Simulation Laboratory since 2004. Even though the five units that exist in EPSC provide the students opportunities to have hands-on experiences with a wide range of water/wastewater treatment technologies, a key module was still missing for the student to experience a full cycle of treatment. This project fabricated a direct-filtration pilot system in EPSC and generated a laboratory manual for education purpose. Engineering applications such as clean bed head loss calculation, backwash flowrate determination, multimedia density calculation and run length prediction are included in the laboratory manual. The system was tested for one semester and modifications have been made both to the direct filtration unit and the laboratory manual. Future work is also proposed to further refine the module

    Fast Correlation Attacks on Grain-like Small State Stream Ciphers and Cryptanalysis of Plantlet, Fruit-v2 and Fruit-80

    Get PDF
    The fast correlation attack (FCA) is one of the most important cryptanalytic techniques against LFSR-based stream ciphers. In CRYPTO 2018, Todo et al. found a new property for the FCA and proposed a novel algorithm which was successfully applied to the Grain family of stream ciphers. Nevertheless, these techniques can not be directly applied to Grain-like small state stream ciphers with keyed update, such as Plantlet, Fruit-v2, and Fruit80. In this paper, we study the security of Grain-like small state stream ciphers by the fast correlation attack. We first observe that the number of required parity-check equations can be reduced when there are multiple different parity-check equations. With exploiting the Skellam distribution, we introduce a sufficient condition to identify the correct LFSR initial state and derive a new relationship between the number and bias of the required parity-check equations. Then a modified algorithm is presented based on this new relationship, which can recover the LFSR initial state no matter what the round key bits are. Under the condition that the LFSR initial state is known, an algorithm is given against the degraded system and to recover the NFSR state at some time instant, along with the round key bits. As cases study, we apply our cryptanalytic techniques to Plantlet, Fruit-v2 and Fruit-80. As a result, for Plantlet our attack takes 273.75 2^{73.75} time complexity and 273.06 2^{73.06} keystream bits to recover the full 80-bit key. Regarding Fruit-v2, 255.34 2^{55.34} time complexity and 255.62 2^{55.62} keystream bits are token to determine the secret key. As for Fruit-80, 264.472^{64.47} time complexity and 262.822^{62.82} keystream bits are required to recover the secret key. More flexible attacks can be obtained with lower data complexity at cost of increasing attack time. Especially, for Fruit-v2 a key recovery attack can be launched with data complexity of 242.382^{42.38} and time complexity of 272.632^{72.63}. Moreover, we have implemented our attack methods on a toy version of Fruit-v2. The attack matches the expected complexities predicted by our theoretical analysis quite well, which proves the validity of our cryptanalytic techniques

    Clinical Characteristics of 26 Human Cases of Highly Pathogenic Avian Influenza A (H5N1) Virus Infection in China

    Get PDF
    BACKGROUND: While human cases of highly pathogenic avian influenza A (H5N1) virus infection continue to increase globally, available clinical data on H5N1 cases are limited. We conducted a retrospective study of 26 confirmed human H5N1 cases identified through surveillance in China from October 2005 through April 2008. METHODOLOGY/PRINCIPAL FINDINGS: Data were collected from hospital medical records of H5N1 cases and analyzed. The median age was 29 years (range 6-62) and 58% were female. Many H5N1 cases reported fever (92%) and cough (58%) at illness onset, and had lower respiratory findings of tachypnea and dyspnea at admission. All cases progressed rapidly to bilateral pneumonia. Clinical complications included acute respiratory distress syndrome (ARDS, 81%), cardiac failure (50%), elevated aminotransaminases (43%), and renal dysfunction (17%). Fatal cases had a lower median nadir platelet count (64.5 x 10(9) cells/L vs 93.0 x 10(9) cells/L, p = 0.02), higher median peak lactic dehydrogenase (LDH) level (1982.5 U/L vs 1230.0 U/L, p = 0.001), higher percentage of ARDS (94% [n = 16] vs 56% [n = 5], p = 0.034) and more frequent cardiac failure (71% [n = 12] vs 11% [n = 1], p = 0.011) than nonfatal cases. A higher proportion of patients who received antiviral drugs survived compared to untreated (67% [8/12] vs 7% [1/14], p = 0.003). CONCLUSIONS/SIGNIFICANCE: The clinical course of Chinese H5N1 cases is characterized by fever and cough initially, with rapid progression to lower respiratory disease. Decreased platelet count, elevated LDH level, ARDS and cardiac failure were associated with fatal outcomes. Clinical management of H5N1 cases should be standardized in China to include early antiviral treatment for suspected H5N1 cases

    Numerical Solutions of a Variable-Order Fractional Financial System

    No full text
    The numerical solution of a variable-order fractional financial system is calculated by using the Adams-Bashforth-Moulton method. The derivative is defined in the Caputo variable-order fractional sense. Numerical examples show that the Adams-Bashforth-Moulton method can be applied to solve such variable-order fractional differential equations simply and effectively. The convergent order of the method is also estimated numerically. Moreover, the stable equilibrium point, quasiperiodic trajectory, and chaotic attractor are found in the variable-order fractional financial system with proper order functions

    Pose Mask: A Model-Based Augmentation Method for 2D Pose Estimation in Classroom Scenes Using Surveillance Images

    No full text
    Solid developments have been seen in deep-learning-based pose estimation, but few works have explored performance in dense crowds, such as a classroom scene; furthermore, no specific knowledge is considered in the design of image augmentation for pose estimation. A masked autoencoder was shown to have a non-negligible capability in image reconstruction, where the masking mechanism that randomly drops patches forces the model to build unknown pixels from known pixels. Inspired by this self-supervised learning method, where the restoration of the feature loss induced by the mask is consistent with tackling the occlusion problem in classroom scenarios, we discovered that the transfer performance of the pre-trained weights could be used as a model-based augmentation to overcome the intractable occlusion in classroom pose estimation. In this study, we proposed a top-down pose estimation method that utilized the natural reconstruction capability of missing information of the MAE as an effective occluded image augmentation in a pose estimation task. The difference with the original MAE was that instead of using a 75% random mask ratio, we regarded the keypoint distribution probabilistic heatmap as a reference for masking, which we named Pose Mask. To test the performance of our method in heavily occluded classroom scenes, we collected a new dataset for pose estimation in classroom scenes named Class Pose and conducted many experiments, the results of which showed promising performance

    Male opportunistic mating increases with intensity of female sexual cannibalism in 3 web-building spiders

    No full text
    10.1093/cz/zoab090CURRENT ZOOLOGY681113-119complete

    Preparation of Colored Microcapsule Phase Change Materials with Colored SiO2 Shell for Thermal Energy Storage and Their Application in Latex Paint Coating

    No full text
    This article reports the design and manufacture of colored microcapsules with specific functions and their application in architectural interior wall coating. Utilizing reactive dyes grafted SiO2 shell to encapsulate paraffin through interfacial polymerization and chemical grafting methods, this experiment successfully synthesized paraffin@SiO2 colored microcapsules. The observations of surface morphology demonstrated that the colored microcapsules had a regular spherical morphology and a well-defined core-shell structure. The analysis of XRD and FT-IR confirmed the presence of amorphous SiO2 shell and the grafting reactive dyes, and the paraffin possessed high crystallinity. Compared with pristine paraffin, the thermal conductivity of paraffin@SiO2 colored microcapsules was significantly enhanced. The results of DSC revealed that the paraffin@SiO2 colored microcapsules performed high encapsulation efficiency and desirable latent heat storage capability. Besides, the examinations of UV-vis and TGA showed that the paraffin@SiO2 colored microcapsules exhibited good thermal reliability, thermal stability, and UV protection property. The analysis of infrared imaging indicated that the prepared latex paint exhibited remarkable temperature-regulated property. Compared with normal interior wall coatings, the temperature was reduced by about 2.5 °C. With such incomparable features, the paraffin@SiO2 colored microcapsules not only appeared well in their solar thermal energy storage and temperature-regulated property, but also make the colored latex paint coating have superb colored fixing capabilities

    Modeling the impact of reproductive mode on masting

    No full text
    Masting is defined as the intermittent highly variable production of seed in a plant population. According to reproductive modes, that is, sexual and asexual reproduction, masting species can be separated into three groups, that is, (1) species, for example, bamboo, flower only once before they die; (2) species, for example, Fagus, reproduce sexually; and (3) species, for example, Stipa tenacissima, reproduce both sexually and asexually. Several theories have been proposed to explore the underlying mechanisms of masting. However, to our knowledge, no theory has been found to explain the mechanism of masting species that reproduce both sexually and asexually. Here we refine the Resource Budget Model by considering a trade-off between sexual and asexual reproduction. Besides the depletion efficient (i.e., the ratio of the cost of seed setting and the cost of flowering), other factors, such as the annual remaining resource (i.e., the rest of the resource from the photosynthetic activity after allocating to growth and maintenance), the trade-off between sexual and asexual reproduction, and the reproductive thresholds, also affect masting. Moreover, two potential reproductive strategies are found to explain the mechanisms: (1) When the annual remaining resource is relatively low, plants reproduce asexually and a part of the resource is accumulated as the cost of asexual reproduction is less than the annual remaining resource. Plants flower and set fruits once the accumulated resource exceeds the threshold of sexual reproduction; (2) when the annual remaining resource is relatively high, and the accumulated resource surpasses the threshold of sexual reproduction, masting occurs. Remarkably, under certain depletion efficient, more investigation in sexual reproduction will lead plants to reproduce periodically. Additionally, plants investigate less resource to reproduce periodically when depletion efficient keeps increasing as plants can reproduce efficiently. Overall, our study provides new insights into the interpretation of masting, especially for species that reproduce both sexually and asexually
    corecore