164 research outputs found

    Efficacy of imidacloprid + moxidectin and selamectin topical solutions against the KS1 Ctenocephalides felis flea strain infesting cats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two studies were conducted to evaluate and compare the efficacy of imidacloprid + moxidectin and selamectin topical solutions against the KS1 flea strain infesting cats. In both studies the treatment groups were comprised of non-treated controls, 6% w/v selamectin (Revolution<sup>®</sup>; Pfizer Animal Health) topical solution and 10% w/v imidacloprid + 1% w/v moxidectin (Advantage <it>Multi</it><sup>® </sup>for Cats, Bayer Animal Health) topical solution. All cats were infested with 100 fleas on Days -2, 7, 14, 21, and 28. The difference in the studies was that in study #1 efficacy evaluations were conducted at 24 and 48 hours post-treatment or post-infestation, and in study #2 evaluations were conducted at 12 and 24 hours.</p> <p>Results</p> <p>In study #1 imidacloprid + moxidectin and the selamectin formulation provided 99.8% and 99.0% efficacy at 24 hours post-treatment. On day 28, the 24 hour efficacy of the selamectin formulation dropped to 87.1%, whereas the imidacloprid + moxidectin formulation provided 98.9% efficacy. At the 48 hour assessments following the 28 day infestations, efficacy of the imidacloprid + moxidectin and selamectin formulations was 96.8% and 98.3% respectively. In study # 2 the efficacy of the imidacloprid + moxidectin and selamectin formulations 12 hours after treatment was 100% and 69.4%, respectively. On day 28, efficacy of the imidacloprid + moxidectin and selamectin formulations 12 hours after infestation was 90.2% and 57.3%, respectively. In study #2 both formulations provided high levels of efficacy at the 24 hour post-infestation assessments, with selamectin and imidacloprid + moxidectin providing 95.3% and 97.5% efficacy, following infestations on day 28.</p> <p>Conclusions</p> <p>At the 24 and 48 hour residual efficacy assessments, the imidacloprid + moxidectin and selamectin formulations were similarly highly efficacious. However, the imidacloprid + moxidectin formulation provided a significantly higher rate of flea kill against the KS1 flea strain infesting cats at every 12 hour post-infestation residual efficacy assessment. Both formulations should provide excellent flea control for an entire month on cats.</p

    Comparative efficacy of two fipronil spot-on formulations against experimental tick infestations (Ixodes ricinus) in dogs

    Get PDF
    A parallel-group-design, randomized, unicentre and blinded controlled study was undertaken to assess the efficacy of a new fipronil-based spot-on formulation applied once to dogs against experimental Ixodes ricinus infestations. Six dogs served as negative controls (group 1), six dogs served as positive controls (group 2) receiving the original fipronil spot-on (Frontline® spot-on Dog, Merial) at a dosage of 0.67 mL for a dog weighing from 2 to 10 kg and 1.34 mL for a dog weighing from 10.1 to 20 kg and six dogs were treated with a 10% w/v fipronil-based spot-on solution (Effipro® Spot-on, Virbac SA) at an identical dosage (group 3, 0.67 mL for a dog weighing from 2 to 10 kg and 1.34 mL for a dog weighing from 10.1 to 20 kg). Each dog was sedated and subsequently infested with 50 unfed adult I. ricinus on days −7, −2, 7, 14, 21, 28 and 35. Forty-eight hours after the treatment and 48 h after each challenge (days −5, 2, 9, 16, 23, 30 and 37), the population of the remaining ticks was assessed for each animal. Geometric mean tick counts obtained were reduced by 99% and 94% on day 2 in groups 2 and 3, respectively, compared to the negative control group. Dogs were protected from re-infestations with an efficacy of >90% for 3 weeks in group 2 and for 5 weeks in group 3. Both 10% w/v fipronil-based spot-on solutions, despite different vehicles, were equally able to eradicate tick infestation, to prevent new infestations and were equally well tolerated

    Fleas infesting pets in the era of emerging extra-intestinal nematodes

    Get PDF

    Tick-borne encephalitis virus in dogs - is this an issue?

    Get PDF
    The last review on Tick-borne encephalitis (TBE) in dogs was published almost ten years ago. Since then, this zoonotic tick-borne arbovirus has been geographically spreading and emerging in many regions in Eurasia and continues to do so. Dogs become readily infected with TBE virus but they are accidental hosts not capable to further spread the virus. They seroconvert upon infection but they seem to be much more resistant to the clinical disease than humans. Apart from their use as sentinels in endemic areas, however, an increasing number of case reports appeared during the last decade thus mirroring the rising public health concerns. Owing to the increased mobility of people travelling to endemic areas with their companion dogs, this consequently leads to problems in recognizing and diagnosing this severe infection in a yet non-endemic area, simply because the veterinarians are not considering TBE. This situation warrants an update on the epidemiology, clinical presentation and possible preventions of TBE in the dog

    The synergistic action of imidacloprid and flumethrin and their release kinetics from collars applied for ectoparasite control in dogs and cats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The control of tick and flea burdens in dogs and cats has become essential to the control of important and emerging vector borne diseases, some of which are zoonoses. Flea worry and flea bite hypersensitivity are additionally a significant disease entity in dogs and cats. Owner compliance in maintaining the pressure of control measures has been shown to be poor. For these reasons efforts are continuously being made to develop ectoparasiticides and application methods that are safe, effective and easy to apply for pet owners. A new polymer matrix collar has recently been developed which is registered for 8 months use in cats and dogs. The basic properties of this collar have been investigated in several <it>in vitro </it>and <it>in vivo </it>studies.</p> <p>Methods</p> <p>The effects of imidacloprid, flumethrin and the combination were evaluated in vitro by means of whole cell voltage clamp measurement experiments conducted on isolated neuron cells from <it>Spodoptera frugiperda</it>. The in vitro efficacy of the two compounds and the combination against three species of ticks and their life stages and fleas were evaluated in a dry surface glass vial assay. The kinetics of the compounds over time in the collar were evaluated by the change in mass of the collar and measurement of the surface concentrations and concentrations of the actives in the collar matrix by HPLC. Hair clipped from collar treated dogs and cats, collected at various time points, was used to assess the acaricidal efficacy of the actives ex vivo.</p> <p>Results</p> <p>An <it>in vitro </it>isolated insect nerve model demonstrated the synergistic neurotoxic effects of the pyrethroid flumethrin and the neonicotinoid imidacloprid. An <it>in vitro </it>glass vial efficacy and mortality study against various life stages of the ticks <it>Ixodes ricinus, Rhipicephalus sanguineus </it>and <it>Dermacentor reticulatus </it>and against the flea (<it>Ctenocephalides felis</it>) demonstrated that the combination of these products was highly effective against these parasites. The release kinetics of these actives from a neck collar (compounded with 10% imidacloprid and 4.5% flumethrin) was extensively studied in dogs and cats under laboratory and field conditions. Acaricidal concentrations of the actives were found to be consistently released from the collar matrix for 8 months. None of the collar studies in dogs or cats were associated with any significant collar related adverse event.</p> <p>Conclusion</p> <p>Here we demonstrated the synergism between the pyrethroid flumethrin and the neonicotinoid imidacloprid, both provided in therapeutically relevant doses by a slow release collar matrix system over 8 months. This collar is therefore a convenient and safe tool for a long-term protection against ectoparasites.</p
    corecore