49 research outputs found

    Unilateral versus bilateral thyroarytenoid Botulinum toxin injections in adductor spasmodic dysphonia: a prospective study

    Get PDF
    OBJECTIVES: In this preliminary prospective study, we compared unilateral and bilateral thyroarytenoid muscle injections of Botulinum toxin (Dysport) in 31 patients with adductor spasmodic dysphonia, who had undergone more than 5 consecutive Dysport injections (either unilateral or bilateral) and had completed 5 concomitant self-rated efficacy and complication scores questionnaires related to the previous injections. We also developed a Neurophysiological Scoring (NPS) system which has utility in the treatment administration. METHOD AND MATERIALS: Data were gathered prospectively on voice improvement (self-rated 6 point scale), length of response and duration of complications (breathiness, cough, dysphagia and total voice loss). Injections were performed under electromyography (EMG) guidance. NPS scale was used to describe the EMG response. Dose and unilateral/bilateral injections were determined by clinical judgment based on previous response. Time intervals between injections were patient driven. RESULTS: Low dose unilateral Dysport injection was associated with no significant difference in the patient's outcome in terms of duration of action, voice score (VS) and complication rate when compared to bilateral injections. Unilateral injections were not associated with any post treatment total voice loss unlike the bilateral injections. CONCLUSION: Unilateral low dose Dysport injections are recommended in the treatment of adductor spasmodic dysphonia

    Predicting tissue specific cis-regulatory modules in the human genome using pairs of co-occurring motifs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Researchers seeking to unlock the genetic basis of human physiology and diseases have been studying gene transcription regulation. The temporal and spatial patterns of gene expression are controlled by mainly non-coding elements known as cis-regulatory modules (CRMs) and epigenetic factors. CRMs modulating related genes share the regulatory signature which consists of transcription factor (TF) binding sites (TFBSs). Identifying such CRMs is a challenging problem due to the prohibitive number of sequence sets that need to be analyzed.</p> <p>Results</p> <p>We formulated the challenge as a supervised classification problem even though experimentally validated CRMs were not required. Our efforts resulted in a software system named CrmMiner. The system mines for CRMs in the vicinity of related genes. CrmMiner requires two sets of sequences: a mixed set and a control set. Sequences in the vicinity of the related genes comprise the mixed set, whereas the control set includes random genomic sequences. CrmMiner assumes that a large percentage of the mixed set is made of background sequences that do not include CRMs. The system identifies pairs of closely located motifs representing vertebrate TFBSs that are enriched in the training mixed set consisting of 50% of the gene loci. In addition, CrmMiner selects a group of the enriched pairs to represent the tissue-specific regulatory signature. The mixed and the control sets are searched for candidate sequences that include any of the selected pairs. Next, an optimal Bayesian classifier is used to distinguish candidates found in the mixed set from their control counterparts. Our study proposes 62 tissue-specific regulatory signatures and putative CRMs for different human tissues and cell types. These signatures consist of assortments of ubiquitously expressed TFs and tissue-specific TFs. Under controlled settings, CrmMiner identified known CRMs in noisy sets up to 1:25 signal-to-noise ratio. CrmMiner was 21-75% more precise than a related CRM predictor. The sensitivity of the system to locate known human heart enhancers reached up to 83%. CrmMiner precision reached 82% while mining for CRMs specific to the human CD4<sup>+ </sup>T cells. On several data sets, the system achieved 99% specificity.</p> <p>Conclusion</p> <p>These results suggest that CrmMiner predictions are accurate and likely to be tissue-specific CRMs. We expect that the predicted tissue-specific CRMs and the regulatory signatures broaden our knowledge of gene transcription regulation.</p

    A Patient-Specific in silico Model of Inflammation and Healing Tested in Acute Vocal Fold Injury

    Get PDF
    The development of personalized medicine is a primary objective of the medical community and increasingly also of funding and registration agencies. Modeling is generally perceived as a key enabling tool to target this goal. Agent-Based Models (ABMs) have previously been used to simulate inflammation at various scales up to the whole-organism level. We extended this approach to the case of a novel, patient-specific ABM that we generated for vocal fold inflammation, with the ultimate goal of identifying individually optimized treatments. ABM simulations reproduced trajectories of inflammatory mediators in laryngeal secretions of individuals subjected to experimental phonotrauma up to 4 hrs post-injury, and predicted the levels of inflammatory mediators 24 hrs post-injury. Subject-specific simulations also predicted different outcomes from behavioral treatment regimens to which subjects had not been exposed. We propose that this translational application of computational modeling could be used to design patient-specific therapies for the larynx, and will serve as a paradigm for future extension to other clinical domains

    Molecular mechanisms of EGF signaling-dependent regulation of pipe, a gene crucial for dorsoventral axis formation in Drosophila

    Get PDF
    During Drosophila oogenesis the expression of the sulfotransferase Pipe in ventral follicle cells is crucial for dorsoventral axis formation. Pipe modifies proteins that are incorporated in the ventral eggshell and activate Toll signaling which in turn initiates embryonic dorsoventral patterning. Ventral pipe expression is the result of an oocyte-derived EGF signal which down-regulates pipe in dorsal follicle cells. The analysis of mutant follicle cell clones reveals that none of the transcription factors known to act downstream of EGF signaling in Drosophila is required or sufficient for pipe regulation. However, the pipe cis-regulatory region harbors a 31-bp element which is essential for pipe repression, and ovarian extracts contain a protein that binds this element. Thus, EGF signaling does not act by down-regulating an activator of pipe as previously suggested but rather by activating a repressor. Surprisingly, this repressor acts independent of the common co-repressors Groucho or CtBP
    corecore