64 research outputs found
The IAEA’s activities on radiation protection in interventional cardiology
The International Atomic Energy Agency (IAEA) under its mandate of developing and applying standards of radiation safety has initiated a number of activities in recent years on radiation protection in interventional cardiology. These activities are implemented through four mechanisms, namely training, providing information through the website, research projects and assistance to Member States through Technical Cooperation (TC) projects. Major international initiatives have been taken in the area of training where more than half a dozen regional training courses have been conducted for cardiologists from over 50 countries. Additionally four national training events for over 300 medical and paramedical staff members involved in interventional procedures were held. The training material is freely available on CD from the IAEA. The newly established website provides information on radiation protection issues [1]. Two coordinated research projects have just been completed where peak skin doses to patients undergoing high dose interventional procedures were studied and factors to manage patient doses were identified. The technical cooperation projects involving protection in cardiac interventional procedures have 30 countries as participants
Worldwide diagnostic reference levels for single-photon emission computed tomography myocardial perfusion imaging: findings from INCAPS.
OBJECTIVES: This study sought to establish worldwide and regional diagnostic reference levels (DRLs) and achievable administered activities (AAAs) for single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). BACKGROUND: Reference levels serve as radiation dose benchmarks to compare individual laboratories against aggregated data, helping to identify sites in greatest need of dose reduction interventions. DRLs for SPECT MPI have previously been derived from national or regional registries. To date there have been no multiregional reports of DRLs for SPECT MPI from a single standardized dataset. METHODS: Data were submitted voluntarily to the INCAPS (International Atomic Energy Agency Nuclear Cardiology Protocols Study), a cross-sectional, multinational registry of MPI protocols. A total of 7,103 studies were included. DRLs and AAAs were calculated by protocol for each world region and for aggregated worldwide data. RESULTS: The aggregated worldwide DRLs for rest-stress or stress-rest studies employing technetium Tc 99m-labeled radiopharmaceuticals were 11.2 mCi (first dose) and 32.0 mCi (second dose) for 1-day protocols, and 23.0 mCi (first dose) and 24.0 mCi (second dose) for multiday protocols. Corresponding AAAs were 10.1 mCi (first dose) and 28.0 mCi (second dose) for 1-day protocols, and 17.8 mCi (first dose) and 18.7 mCi (second dose) for multiday protocols. For stress-only technetium Tc 99m studies, the worldwide DRL and AAA were 18.0 mCi and 12.5 mCi, respectively. Stress-first imaging was used in 26% to 92% of regional studies except in North America where it was used in just 7% of cases. Significant differences in DRLs and AAAs were observed between regions. CONCLUSIONS: This study reports reference levels for SPECT MPI for each major world region from one of the largest international registries of clinical MPI studies. Regional DRLs may be useful in establishing or revising guidelines or simply comparing individual laboratory protocols to regional trends. Organizations should continue to focus on establishing standardized reporting methods to improve the validity and comparability of regional DRLs
Effects of Anti-VEGF on Predicted Antibody Biodistribution: Roles of Vascular Volume, Interstitial Volume, and Blood Flow
BACKGROUND: The identification of clinically meaningful and predictive models of disposition kinetics for cancer therapeutics is an ongoing pursuit in drug development. In particular, the growing interest in preclinical evaluation of anti-angiogenic agents alone or in combination with other drugs requires a complete understanding of the associated physiological consequences. METHODOLOGY/PRINCIPAL FINDINGS: Technescan™ PYP™, a clinically utilized radiopharmaceutical, was used to measure tissue vascular volumes in beige nude mice that were naïve or administered a single intravenous bolus dose of a murine anti-vascular endothelial growth factor (anti-VEGF) antibody (10 mg/kg) 24 h prior to assay. Anti-VEGF had no significant effect (p>0.05) on the fractional vascular volumes of any tissues studied; these findings were further supported by single photon emission computed tomographic imaging. In addition, apart from a borderline significant increase (p = 0.048) in mean hepatic blood flow, no significant anti-VEGF-induced differences were observed (p>0.05) in two additional physiological parameters, interstitial fluid volume and the organ blood flow rate, measured using indium-111-pentetate and rubidium-86 chloride, respectively. Areas under the concentration-time curves generated by a physiologically-based pharmacokinetic model changed substantially (>25%) in several tissues when model parameters describing compartmental volumes and blood flow rates were switched from literature to our experimentally derived values. However, negligible changes in predicted tissue exposure were observed when comparing simulations based on parameters measured in naïve versus anti-VEGF-administered mice. CONCLUSIONS/SIGNIFICANCE: These observations may foster an enhanced understanding of anti-VEGF effects in murine tissues and, in particular, may be useful in modeling antibody uptake alone or in combination with anti-VEGF
The Radiation Issue in Cardiology: the time for action is now
The "radiation issue" is the need to consider possible deterministic effects (e.g., skin injuries) and long-term cancer risks due to ionizing radiation in the risk-benefit assessment of diagnostic or therapeutic testing. Although there are currently no data showing that high-dose medical studies have actually increased the incidence of cancer, the "linear-no threshold" model in radioprotection assumes that no safe dose exists; all doses add up in determining cancer risks; and the risk increases linearly with increasing radiation dose. The possibility of deterministic effects should also be considered when skin or lens doses may be over the threshold. Cardiologists have a special mission to avoid unjustified or non-optimized use of radiation, since they are responsible for 45% of the entire cumulative effective dose of 3.0 mSv (similar to the radiological risk of 150 chest x-rays) per head per year to the US population from all medical sources except radiotherapy. In addition, interventional cardiologists have an exposure per head per year two to three times higher than that of radiologists. The most active and experienced interventional cardiologists in high volume cath labs have an annual exposure equivalent to around 5 mSv per head and a professional lifetime attributable to excess cancer risk on the order of magnitude of 1 in 100. Cardiologists are the contemporary radiologists but sometimes imperfectly aware of the radiological dose of the examination they prescribe or practice, which can range from the equivalent of 1-60 mSv around a reference dose average of 10-15 mSv for a percutaneous coronary intervention, a cardiac radiofrequency ablation, a multi-detector coronary angiography, or a myocardial perfusion imaging scintigraphy. A good cardiologist cannot be afraid of life-saving radiation, but must be afraid of radiation unawareness and negligence
Radiological Protection in Cone Beam Computed Tomography (CBCT). ICRP Publication 129
The objective of this publication is to provide guidance on radiological protection in the new technology of cone beam computed tomography (CBCT). Publications 87 and 102 dealt with patient dose management in computed tomography (CT) and multi-detector CT. The new applications of CBCT and the associated radiological protection issues are substantially different from those of conventional CT. The perception that CBCT involves lower doses was only true in initial applications. CBCT is now used widely by specialists who have little or no training in radiological protection. This publication provides recommendations on radiation dose management directed at different stakeholders, and covers principles of radiological protection, training, and quality assurance aspects. Advice on appropriate use of CBCT needs to be made widely available. Advice on optimisation of protection when using CBCT equipment needs to be strengthened, particularly with respect to the use of newer features of the equipment. Manufacturers should standardise radiation dose displays on CBCT equipment to assist users in optimisation of protection and comparisons of performance. Additional challenges to radiological protection are introduced when CBCT-capable equipment is used for both fluoroscopy and tomography during the same procedure. Standardised methods need to be established for tracking and reporting of patient radiation doses from these procedures. The recommendations provided in this publication may evolve in the future as CBCT equipment and applications evolve. As with previous ICRP publications, the Commission hopes that imaging professionals, medical physicists, and manufacturers will use the guidelines and recommendations provided in this publication for implementation of the Commission's principle of optimisation of protection of patients and medical workers, with the objective of keeping exposures as low as reasonably achievable, taking into account economic and societal factors, and consistent with achieving the necessary medical outcomes.status: publishe
- …