42 research outputs found

    Production and Characterization of Antifungal Compounds Produced by Lactobacillus plantarum IMAU10014

    Get PDF
    Lactobacillus plantarum IMAU10014 was isolated from koumiss that produces a broad spectrum of antifungal compounds, all of which were active against plant pathogenic fungi in an agar plate assay. Two major antifungal compounds were extracted from the cell-free supernatant broth of L. plantarum IMAU10014. 3-phenyllactic acid and Benzeneacetic acid, 2-propenyl ester were carried out by HPLC, LC-MS, GC-MS, NMR analysis. It is the first report that lactic acid bacteria produce antifungal Benzeneacetic acid, 2-propenyl ester. Of these, the antifungal products also have a broad spectrum of antifungal activity, namely against Botrytis cinerea, Glomerella cingulate, Phytophthora drechsleri Tucker, Penicillium citrinum, Penicillium digitatum and Fusarium oxysporum, which was identified by the overlay and well-diffusion assay. F. oxysporum, P. citrinum and P. drechsleri Tucker were the most sensitive among molds

    Active Whey Protein Edible Films and Coatings Incorporating Lactobacillus buchneri for Penicillium nordicum Control in Cheese

    Get PDF
    Fungal contamination of food is responsible for health issues and food waste. In this work, the incorporation of a lactic acid bacteria (LAB) with antifungal properties (Lactobacillus buchneri UTAD104) into whey protein-based films and coatings was tested for the control of an ochratoxigenic fungi (Penicillium nordicum) in a cheese matrix. The incorporation of L. buchneri cells resulted in thicker films with less luminosity than control films and colour alteration. Nevertheless, cells inclusion did not alter moisture content, water vapour permeability, mechanical properties, hydrophobicity and chemical structure of the films. Whey protein films were able to maintain the viability of L. buchneri UTAD104 cells in 105 CFU/mL after 30 days of storage at 25 \textdegreeC. When applied in cheese, films and coatings containing L. buchneri cells prevented fungal contamination for at least 30 days, while control cheeses with films and coatings either without LAB or with Lactobacillus casei UM3 (a strain without antifungal ability) showed fungal contamination during that period. Ochratoxin A was not found in cheeses treated with films and coatings containing L. buchneri UTAD104. Results showed that the inclusion of a LAB with antifungal properties in edible films and coatings can help to reduce or eliminate P. nordicum contamination in cheeses.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/04469/2020 unit and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. Ana Guimarães received support through grant SFRH/BD/103245/2014 from the Portuguese FCT.info:eu-repo/semantics/publishedVersio
    corecore