15,530 research outputs found

    Observationally-Motivated Analysis of Simulated Galaxies

    Get PDF
    The spatial and temporal relationships between stellar age, kinematics, and chemistry are a fundamental tool for uncovering the physics driving galaxy formation and evolution. Observationally, these trends are derived using carefully selected samples isolated via the application of appropriate magnitude, colour, and gravity selection functions of individual stars; conversely, the analysis of chemodynamical simulations of galaxies has traditionally been restricted to the age, metallicity, and kinematics of `composite' stellar particles comprised of open cluster-mass simple stellar populations. As we enter the Gaia era, it is crucial that this approach changes, with simulations confronting data in a manner which better mimics the methodology employed by observers. Here, we use the \textsc{SynCMD} synthetic stellar populations tool to analyse the metallicity distribution function of a Milky Way-like simulated galaxy, employing an apparent magnitude plus gravity selection function similar to that employed by the RAdial Velocity Experiment (RAVE); we compare such an observationally-motivated approach with that traditionally adopted - i.e., spatial cuts alone - in order to illustrate the point that how one analyses a simulation can be, in some cases, just as important as the underlying sub-grid physics employed.Comment: Accepted for publication in PoS (Proceedings of Science): Nuclei in the Cosmos XIII (Debrecen, Jul 2014); 6 pages; 3 figure

    Conductor-backed coplanar waveguide resonators of Y-Ba-Cu-O and Tl-Ba-Ca-Cu-O on LaAlO3

    Get PDF
    Conductor-backed coplanar waveguide (CBCPW) resonators operating at 10.8 GHz have been fabricated from Tl-Ba-Ca-O (TBCCO) and Y-Ba-Cu-O (YBCO) thin films on LaAlO3. The resonators consist of a coplanar waveguide (CPW) patterned on the superconducting film side of the LaAlO3 substrate with a gold ground plane coated on the opposite side. These resonators were tested in the temperature range from 14 to 106 K. At 77 K, the best of our TBCCO and YBCO resonators have an unloaded quality factor (Qo) 7 and 4 times, respectively, larger than that of a similar all-gold resonator. In this study, the Qo's of the TBCCO resonators were larger than those of their YBCO counterparts throughout the aforementioned temperature range

    Dao's question on the asymptotic behaviour of fullness

    Full text link
    For a local ring (R, \M) of infinite residue field and positive depth, we address the question raised by H. Dao on how to control the asymptotic behaviour of the \M-full, full, and weakly \M-full properties of certain ideals (such notions were first investigated by D. Rees and J. Watanabe), by means of bounding appropriate numbers which express such behaviour. We establish upper bounds, and in certain cases even formulas for such invariants. The main tools used in our results are reduction numbers along with Ratliff-Rush closure of ideals, and also the Castelnuovo-Mumford regularity of the Rees algebra of \M.Comment: 11 pages. Submitted for publicatio

    Tensor products and solutions to two homological conjectures for Ulrich modules

    Full text link
    We address the problem of when the tensor product of two finitely generated modules over a Cohen-Macaulay local ring is Ulrich in the generalized sense of Goto et al., and in particular in the original sense from the 80's. As applications, besides freeness criteria for modules, characterizations of complete intersections, and an Ulrich-based approach to the long-standing Berger's conjecture, we show that two celebrated homological conjectures, namely the Auslander-Reiten and the Huneke-Wiegand problems, are true for the class of Ulrich modules.Comment: 12 page

    Determination of surface resistance and magnetic penetration depth of superconducting YBa2Cu3O(7-delta) thin films by microwave power transmission measurements

    Get PDF
    A novel waveguide power transmission measurement technique was developed to extract the complex conductivity of superconducting thin films at microwave frequencies. The microwave conductivity was taken of two laser ablated YBa2Cu3O(7-delta) thin films on LaAlO3 with transition temperatures of approx. 86.3 and 82 K, respectively, in the temperature range 25 to 300 K. From the conductivity values, the penetration depth was found to be approx. 0.54 and 0.43 micron, and the surface resistance (R sub s) to be approx. 24 and 36 micro-Ohms at 36 GHz and 76 K for the two films under consideration. The R sub s values were compared with those obtained from the change in the Q-factor of a 36 GHz Te sub 011-mode (OFHC) copper cavity by replacing one of its end walls with the superconducting sample. This technique allows noninvasive characterization of high transition temperature superconducting thin films at microwave frequencies

    Multi-color pyrometer for materials processing in space

    Get PDF
    The design, construction and calibration of a computer-linked multicolor pyrometer is described. The device was constructed for ready adaptation to a spacecraft and for use in the control of thermal processes for manufacturing materials in space. The pyrometer actually uses only one color at a time, and is relatively insensitive to uncertainties in the heated object's emissivity because the product of the color and the temperature has been selected to be within a regime where the radiant energy emitted from the body increases very rapidly with temperature. The instrument was calibrated and shown to exceed its design goal of temperature measurements between 300 and 2000 C, and its accuracy in the face of imprecise knowledge of the hot object's emissivity was demonstrated
    corecore