66 research outputs found

    The Fe65 Adaptor Protein Interacts through Its PID1 Domain with the Transcription Factor CP2/LSF/LBP1

    Get PDF
    The neural protein Fe65 possesses three putative protein-protein interaction domains: one WW domain and two phosphotyrosine interaction/phosphotyrosine binding domains (PID1 and PID2); the most C-terminal of these domains (PID2) interacts in vivo with the Alzheimer's beta-amyloid precursor protein, whereas the WW domain binds to Mena, the mammalian homolog of Drosophila-enabled protein. By the interaction trap procedure, we isolated a cDNA clone encoding a possible ligand of the N-terminal PID/PTB domain of Fe65 (PID1). Sequence analysis of this clone revealed that this ligand corresponded to the previously identified transcription factor CP2/LSF/LBP1. Co-immunoprecipitation experiments demonstrated that the interaction between Fe65 and CP2/LSF/LBP1 also takes place in vivo between the native molecules. The localization of both proteins was studied using fractionated cellular extracts. These experiments demonstrated that the various isoforms of CP2/LSF/LBP1 are differently distributed among subcellular fractions. At least one isoform, derived from alternative splicing (LSF-ID), is present outside the nucleus; Fe65 was found in both fractions. Furthermore, transfection experiments with an HA-tagged CP2/LSF/LBP1 cDNA demonstrated that Fe65 interacts also with the nuclear form of CP2/LSF/LBP1. Considering that the analysis of Fe65 distribution in fractionated cell extracts demonstrated that this protein is present both in nuclear and non-nuclear fractions, we examined the expression of Fe65 deletion mutants in the two fractions. This analysis allowed us to observe that a small region N-terminal to the WW domain is phosphorylated and is necessary for the presence of Fe65 in the nuclear fraction

    The WW Domain of Neural Protein FE65 Interacts with Proline-rich Motifs in Mena, the Mammalian Homolog of Drosophila Enabled*

    Get PDF
    The neural protein FE65 contains two types of protein-protein interaction modules: one WW binding domain and two phosphotyrosine binding domains. The carboxyl-terminal phosphotyrosine binding domain of FE65 interacts in vivo with the beta-amyloid precursor protein, which is implicated in Alzheimer disease. To understand the function of this adapter protein, we identified binding partners for the FE65 WW domain. Proline-rich sequences sharing a proline-proline-leucine-proline core motif were recovered by screening expression libraries for ligands of the FE65 WW domain. Five proteins of molecular masses 60, 75, 80, 140, and 200 kDa could be purified from mouse brain lysates by affinity to the FE65 WW domain. We identified two of these five proteins as the 80- and 140-kDa isoforms encoded by Mena, the mammalian homolog of the Drosophila Enabled gene. Using the SPOTs technique of peptide synthesis, we identified the sequences in Mena that interact with the FE65 WW domain and found that they contain the signature proline-proline-leucine-proline motif. Finally, we demonstrated that Mena binds to FE65 in vivo by coimmunoprecipitation assay from COS cell extracts. The specificity of the Mena-FE65 WW domain association was confirmed by competition assays. Further characterization of the FE65-Mena complex may identify a physiological role for these proteins in beta-amyloid precursor protein biogenesis and may help in understanding the mechanism of molecular changes that underlie Alzheimer disease

    Platelet-derived Growth Factor Induces the β-γ-Secretase-mediated Cleavage of Alzheimer's Amyloid Precursor Protein through a Src-Rac-dependent Pathway

    Get PDF
    The beta-amyloid peptide (Abeta) present in the senile plaques of Alzheimer's disease derives from the cleavage of a membrane protein, named APP, driven by two enzymes, known as beta- and gamma-secretases. The mechanisms regulating this cleavage are not understood. We have developed an experimental system to identify possible extracellular signals able to trigger the cleavage of an APP-Gal4 fusion protein, which is detected by measuring the expression of the CAT gene transcribed under the control of the Gal4 transcription factor, which is released from the membrane upon the cleavage of APP-Gal4. By using this assay, we purified a protein contained in the C6 cell-conditioned medium, which activates the cleavage of APP-Gal4 and which we demonstrated to be PDGF-BB. The APP-Gal4 processing induced by PDGF is dependent on the gamma-secretase activity, being abolished by an inhibitor of this enzyme, and is the consequence of the activation of a pathway downstream of the PDGF-receptor, which includes the non-receptor tyrosine kinase Src and the small G-protein Rac1. These findings are confirmed by the observation that a constitutively active form of Src increases Abeta generation and that, in cells stably expressing APP, the generation of A is strongly decreased by the Src tyrosine kinase inhibitor PP2

    Interaction of the Phosphotyrosine Interaction/Phosphotyrosine Binding-related Domains of Fe65 with Wild-type and Mutant Alzheimer's β-Amyloid Precursor Proteins

    Get PDF
    The two tandem phosphotyrosine interaction/phosphotyrosine binding (PID/PTB) domains of the Fe65 protein interact with the intracellular region of the Alzheimer's beta-amyloid precursor protein (APP). This interaction, previously demonstrated in vitro and in the yeast two hybrid system, also takes place in vivo in mammalian cells, as demonstrated here by anti-Fe65 co-immunoprecipitation experiments. This interaction differs from that occurring between other PID/PTB domain-containing proteins, such as Shc and insulin receptor substrate 1, and activated growth factor receptors as follows: (i) the Fe65-APP interaction is phosphorylation-independent; (ii) the region of the APP intracellular domain involved in the binding is larger than that of the growth factor receptor necessary for the formation of the complex with Shc; and (iii) despite a significant similarity the carboxyl-terminal regions of PID/PTB of Fe65 and of Shc are not functionally interchangeable in terms of binding cognate ligands. A role for Fe65 in the pathogenesis of familial Alzheimer's disease is suggested by the finding that mutant APP, responsible for some cases of familial Alzheimer's disease, shows an altered in vivo interaction with Fe65

    Fe65 matters: New light on an old molecule.

    No full text
    The discovery that the main constituents of amyloid deposits, characteristic of Alzheimer neuropathology, derive from the proteolytic processing of the membrane precursor amyloid precursor protein (APP) is one of the milestones of the research history of this disease. Despite years of intense studies, the functions of APP and of its amyloidogenic processing are still under debate. One focus of these studies was the complex network of protein-protein interactions centered at the cytosolic domain of APP, which suggests the involvement of APP in a lively signaling pathway. Fe65 was the first protein to be demonstrated to interact with the APP cytodomain. Starting from this observation, a large body of data has been gathered, indicating that Fe65 is an adaptor protein, which binds numerous proteins, further than APP. Among these proteins, the crosstalk with Mena, mDab, and Abl suggested the involvement of the Fe65-APP complex in the regulation of cell motility, with a relevant role in differentiation and development. Other partners, like the histone acetyltransferase Tip60, indicated the possibility that the nuclear fraction of Fe65 could be involved in gene regulation and/or DNA repair

    The oligomeric complexes involving FE65 and APP control cell cycle progression through the transcriptional regulation of thymidilate synthase gene

    No full text
    The functions of the oligomeric complexes that include the Alzheimer’s beta-amyloid precursor protein (APP) and the adaptor protein Fe65 are still unknown. We demonstrated that Fe65 is present both in the cytoplasm and in the nucleus and that APP functions as an extranuclear anchor, which prevents Fe65 nuclear translocation. This suggests the hypothesis that, similar to what was observed for Notch, the presenilin-mediated cleavage of APP could result in the translocation of Fe65 to the nucleus and, in turn, in the regulation of transcription or of other nuclear functions. According to this hypothesis, we and others demonstrated that Fe65 could play a role in the regulation of transcription. We are addressing this hypothesis, and several lines of evidence support it. First, we have demonstrated that the overexpression of Fe65 affects cell cycle progression by inhibiting the expression of the thymidylate synthase (TS), a key enzyme of the S phase of cell cycle. This inhibition is observed only when overexpressed Fe65 accumulates in the nucleus and several results suggest that it is the consequence of a Fe65-mediated regulation of the TS gene. Second, Fe65 has three protein–protein interaction domains, a PTB domain interacting with APP, a second PTB domain, which binds to two nuclear proteins, the transcription factor LSF or to the histone acetylase Tip60.We have now identified numerous possible ligands of the third domain of Fe65, theWWdomain, and many of these molecules are nuclear proteins. Third, when the WW domain is fused to a DNA binding domain of a transcription factor, the fusion protein is able to regulate the transcription of a reporter gene. The involvement of Fe65–APP complex in the regulation of gene expression could have a significant impact on understanding of the molecular basis of Alzheimer’s disease: in fact, the increased beta–gamma-processing of APP could be accompanied by an increased Fe65 nuclear translocation and, in turn, by an alteration of nuclear functions

    The Fe65 adaptor protein interacts through its PID1 domain with the transcription factor CP2/LSF/LBP1

    No full text
    • …
    corecore