475 research outputs found

    An Innovative Harmonic Radar to Track Flying Insects: the Case of Vespa velutina

    Get PDF
    Over the last 30 years, harmonic radars have been effective only in tracking insects flying at low altitude and over flat terrain. We developed an innovative harmonic radar, implementing the most advanced radar techniques, which covers a large field of view in elevation (with an angular aperture of about 24°) and can track insects up to a range of 500 m. We show all the components of this new harmonic radar and its first application, the tracking of Vespa velutina (yellow-legged Asian hornet). This is an invasive species which, although indigenous to South-East Asia, is spreading quickly to other regions of the world. Because of its fast diffusion and the serious threat it poses to both honeybee colonies and to humans, control measures are mandatory. When equipped with a small passive transponder, this radar system can track the flight trajectory of insects and locate nests to be destroyed. This tool has potential not only for monitoring V. velutina but also for tracking other larger insects and small size vertebrates

    Clinical implications of DNA repair defects in high-grade serous ovarian carcinomas

    Get PDF
    Despite significant improvements in surgical and medical management, high grade serous ovarian cancer (HGSOC) still represents the deadliest gynecologic malignancy and the fifth most frequent cause of cancer-related mortality in women in the USA. Since DNA repair alterations are regarded as the “the Achille’s heel” of HGSOC, both DNA homologous recombination and DNA mismatch repair deficiencies have been explored and targeted in epithelial ovarian cancers in the latest years. In this review, we aim at focusing on the therapeutic issues deriving from a faulty DNA repair machinery in epithelial ovarian cancers, starting from existing and well-established treatments and investigating new therapeutic approaches which could possibly improve ovarian cancer patients’ survival outcomes in the near future. In particular, we concentrate on the role of both Poly (ADP-ribose) Polymerase (PARP) inhibitors (PARPis) and immune checkpoint inhibitors in HGSOC, highlighting their activity in relation to BRCA1/2 mutational status and homologous recombination deficiency (HRD). We investigate the biological rationale supporting their use in the clinical setting, pointing at tracking their route from the laboratory bench to the patient’s bedside. Finally, we deal with the onset of mechanisms of primary and acquired resistance to PARPis, reporting the pioneering strategies aimed at converting homologous-recombination (HR) proficient tumors into homologous recombination (HR)-deficient HGSOC

    TOPLHA: an accurate and efficient numerical tool for analysis and design of LH antennas

    Get PDF
    This paper presents a self-consistent, integral-equation approach for the analysis of plasma-facing lower hybrid (LH) launchers; the geometry of the waveguide grill structure can be completely arbitrary, including the non-planar mouth of the grill. This work is based on the theoretical approach and code implementation of the TOPICA code, of which it shares the modular structure and constitutes the extension into the LH range. Code results are validated against the literature results and simulations from similar code

    Synthesis and crystal structure of Bis(2-phenylpyridine-C,N’)-bis(acetonitrile) iridium(III)hexafluorophosphate showing three anion/cation couples in the asymmetric unit

    Get PDF
    The title compound bis(2-phenylpyridine-C,N’)-bis(acetonitrile)iridium(III)hexafluorophosphate, a six-coordinate iridium(III) complex, crystallizes in the P-1 space group. Iridium is in a distorted octahedral (n = 6) coordination with the N,C’ atoms of two phenylpyridine and the N atoms of two acetonitrile ligands. The peculiarity of this structure is that three independent moieties of the title compound and three PF6− anions, to counterbalance the charge, are observed in the asymmetric unit and this is a rather uncommon fact among the Cambridge Crystallographic Database (CSD) entries. The three couples are almost identical conformers with very similar torsional angles. The packing, symmetry, and space group were accurately analyzed and described also by means of Hirshfeld surface analysis, which is able to underline subtle differences among the three anion/cation couples in the asymmetric unit. The driving force of the packing is the clustering of the aromatic rings and the maximization of acetonitrile:PF6− interactions. The asymmetry of the cluster is the cause of the unusual number of moieties in the asymmetric unit

    An harmonic radar prototype for insect tracking in harsh environments

    Get PDF
    Harmonic entomological radars have been used in the last decades to track small and lightweight passive tags carried by various insects, usually flying at low altitude and over flat terrain. Despite being exploited in many applications, not a lot of progress was achieved in terms of performances over the years. This paper reviews the research work done in this topic throughout the European LIFE project STOPVESPA, from 2015 to 2019. The main objective of LIFE STOPVESPA was to contain the invasive Asian hornet (Vespa velutina) and prevent it from further invading Italy. Among the foreseen activities, a new harmonic radar has been developed as an effective tool to locate the hornets nests to be destroyed. A preliminary prototype, based on a magnetron generator, was tested in 2015, showing a detection range of about 125 m. A first upgrade of this prototype was released in 2016, allowing to increase the detection range up to 150 m. A new approach, based on a solid state power amplifier and a digitally modulated signal, was then adopted for the second prototype developed in 2017 and extensively run in 2018; the detection range raised to 500 m. A last engineered prototype was eventually built for the 2019 summer campaign with additional improvements. This tool has been extensively validated over the last years with the Asian hornet but it has potential for tracking and monitoring many other flying insects

    Experimental pressure versus temperature isochoric – isoplethic curves for n-pentane – dimethyl ether, n-pentane – dimethyl ether – polybutadiene and n-pentane – dimethyl ether – polybutadiene– hydrogen at high pressures

    Get PDF
    Loci of isochoric - isoplethic experimental phase equilibrium data, were determined for the binary mixture dimethyl ether (DME) + n-pentane (C5); the ternary mixture: DME + C5 + polybutadiene (PB); and the quaternary mixture DME + C5 + PB + hydrogen (H2). Binary experiments were performed at varying overall density (ρ) and varying quantity of C5. Ternary experiments were performed at varying ρ and varying relative quantities of each light solvent. In the case of quaternary mixtures, the mass fraction of polymer was kept constant, and the amount of H2 and ρ were varied. The experimental data obtained for binary and ternary mixtures were correlated using the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) equation of state (EoS)

    On the rehydration of organic layered double hydroxides to form low-ordered carbon/LDH nanocomposites

    Get PDF
    Low-ordered carbon/layered double hydroxide (LDH) nanocomposites were prepared by rehydration of the oxides produced by calcination of an organic LDH. While the memory effect is a widely recognized effect on oxides produced by inorganic LDH, it is unprecedented from the calcination/rehydration of organic ones. Different temperatures (400, 600, and 1100 °C) were tested on the basis of thermogravimetric data. Water, instead of a carbonate solution, was used for the rehydration, with CO2 available from water itself and/or air to induce a slower process with an easier and better intercalation of the carbonaceous species. The samples were characterized by X-ray powder diffraction (XRPD), infrared in reflection mode (IR), and Raman spectroscopies and scanning electron microscopy (SEM). XRPD indicated the presence of carbonate LDH, and of residuals of unreacted oxides. IR confirmed that the prevailing anion is carbonate, coming from the water used for the rehydration and/or air. Raman data indicated the presence of low-ordered carbonaceous species moieties and SEM and XRPD the absence of separated bulky graphitic sheets, suggesting an intimate mixing of the low ordered carbonaceous phase with reconstructed LDH. Organic LDH gave better memory effect after calcination at 400 °C. Conversely, the carbonaceous species are observed after rehydration of the sample calcined at 600 °C with a reduced memory effect, demonstrating the interference of the carbonaceous phase with LDH reconstruction and the bonding with LDH layers to form a low-ordered carbon/LDH nanocomposite
    corecore