42 research outputs found

    Anti-angiogenic action of hyperthermia by suppressing gene expression and production of tumour-derived vascular endothelial growth factor in vivo and in vitro

    Get PDF
    Vascular endothelial growth factor is an important angiogenic factor for tumour progression because it increases endothelial-cell proliferation and remodels extracellular matrix in blood vessels. We demonstrated that hyperthermia at 42°C, termed heat shock, suppressed the gene expression and production of vascular endothelial growth factor in human fibrosarcoma HT-1080 cells and inhibited its in vitro angiogenic action on human umbilical vein endothelial cells. The gene expression of alternative splicing variants for vascular endothelial growth factor, VEGF121, VEGF165 and VEGF189, was constitutively detected in HT-1080 cells, but the VEGF189 transcript was less abundant than VEGF121 and VEGF165. When HT-1080 cells were treated with heat shock at 42°C for 4 h and then maintained at 37°C for another 24 h, the gene expression of all vascular endothelial growth factor variants was suppressed. In addition, HT-1080 cells were found to produce abundant VEGF165, but much less VEGF121, both of which were inhibited by heat shock. Furthermore, the level of vascular endothelial growth factor in sera from six cancer patients was significantly diminished 2–3 weeks after completion of whole-body hyperthermia at 42°C (49.9±36.5 pg ml−1, P<0.01) as compared with that prior to the treatment (177.0±77.5 pg ml−1). On the other hand, HT-1080 cell-conditioned medium showed vascular endothelial growth factor-dependent cell proliferative activity and the augmentation of pro-matrix metalloproteinase-1 production in human umbilical vein endothelial cells. The augmentation of endothelial-cell proliferation and pro-matrix metalloproteinase-1 production was poor when human umbilical vein endothelial cells were treated with conditioned medium from heat-shocked HT-1080 cells. These results suggest that hyperthermia acts as an anti-angiogenic strategy by suppressing the expression of tumour-derived vascular endothelial growth factor production and thereby inhibiting endothelial-cell proliferation and extracellular matrix remodelling in blood vessels

    Natural history of SLC11 genes in vertebrates: tales from the fish world

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>SLC11A1/Nramp1 </it>and <it>SLC11A2/Nramp2 </it>genes belong to the <it>SLC11/Nramp </it>family of transmembrane divalent metal transporters, with <it>SLC11A1 </it>being associated with resistance to pathogens and <it>SLC11A2 </it>involved in intestinal iron uptake and transferrin-bound iron transport. Both members of the <it>SLC11 </it>gene family have been clearly identified in tetrapods; however <it>SLC11A1 </it>has never been documented in teleost fish and is believed to have been lost in this lineage during early vertebrate evolution. In the present work we characterized the <it>SLC11 </it>genes in teleosts and evaluated if the roles attributed to mammalian <it>SLC11 </it>genes are assured by other fish specific <it>SLC11 </it>gene members.</p> <p>Results</p> <p>Two different <it>SLC11 </it>genes were isolated in the European sea bass (<it>Dicentrarchus. labrax</it>), and named <it>slc11a2-α </it>and <it>slc11a2-β</it>, since both were found to be evolutionary closer to tetrapods <it>SLC11A2</it>, through phylogenetic analysis and comparative genomics. Induction of <it>slc11a2-α </it>and <it>slc11a2-β </it>in sea bass, upon iron modulation or exposure to <it>Photobacterium damselae </it>spp. <it>piscicida</it>, was evaluated in <it>in vivo </it>or <it>in vitro </it>experimental models. Overall, <it>slc11a2-α </it>was found to respond only to iron deficiency in the intestine, whereas <it>slc11a2-β </it>was found to respond to iron overload and bacterial infection in several tissues and also in the leukocytes.</p> <p>Conclusions</p> <p>Our data suggests that despite the absence of <it>slc11a1</it>, its functions have been undertaken by one of the <it>slc11a2 </it>duplicated paralogs in teleost fish in a case of synfunctionalization, being involved in both iron metabolism and response to bacterial infection. This study provides, to our knowledge, the first example of this type of sub-functionalization in iron metabolism genes, illustrating how conserving the various functions of the SLC11 gene family is of crucial evolutionary importance.</p

    Parallels between Pathogens and Gluten Peptides in Celiac Sprue

    Get PDF
    Pathogens are exogenous agents capable of causing disease in susceptible organisms. In celiac sprue, a disease triggered by partially hydrolyzed gluten peptides in the small intestine, the offending immunotoxins cannot replicate, but otherwise have many hallmarks of classical pathogens. First, dietary gluten and its peptide metabolites are ubiquitous components of the modern diet, yet only a small, genetically susceptible fraction of the human population contracts celiac sprue. Second, immunotoxic gluten peptides have certain unusual structural features that allow them to survive the harsh proteolytic conditions of the gastrointestinal tract and thereby interact extensively with the mucosal lining of the small intestine. Third, they invade across epithelial barriers intact to access the underlying gut-associated lymphoid tissue. Fourth, they possess recognition sequences for selective modification by an endogenous enzyme, transglutaminase 2, allowing for in situ activation to a more immunotoxic form via host subversion. Fifth, they precipitate a T cell–mediated immune reaction comprising both innate and adaptive responses that causes chronic inflammation of the small intestine. Sixth, complete elimination of immunotoxic gluten peptides from the celiac diet results in remission, whereas reintroduction of gluten in the diet causes relapse. Therefore, in analogy with antibiotics, orally administered proteases that reduce the host's exposure to the immunotoxin by accelerating gluten peptide destruction have considerable therapeutic potential. Last but not least, notwithstanding the power of in vitro methods to reconstitute the essence of the immune response to gluten in a celiac patient, animal models for the disease, while elusive, are likely to yield fundamentally new systems-level insights

    “Pumping iron”—how macrophages handle iron at the systemic, microenvironmental, and cellular levels

    Get PDF

    Crystal structure of a SLC11 (NRAMP) transporter reveals the basis for transition-metal ion transport

    Full text link
    Members of the SLC11 (NRAMP) family transport iron and other transition-metal ions across cellular membranes. These membrane proteins are present in all kingdoms of life with a high degree of sequence conservation. To gain insight into the determinants of ion selectivity, we have determined the crystal structure of Staphylococcus capitis DMT (ScaDMT), a close prokaryotic homolog of the family. ScaDMT shows a familiar architecture that was previously identified in the amino acid permease LeuT. The protein adopts an inward-facing conformation with a substrate-binding site located in the center of the transporter. This site is composed of conserved residues, which coordinate Mn(2+), Fe(2+) and Cd(2+) but not Ca(2+). Mutations of interacting residues affect ion binding and transport in both ScaDMT and human DMT1. Our study thus reveals a conserved mechanism for transition-metal ion selectivity within the SLC11 family
    corecore