15,900 research outputs found

    Causal Structure and Birefringence in Nonlinear Electrodynamics

    Full text link
    We investigate the causal structure of general nonlinear electrodynamics and determine which Lagrangians generate an effective metric conformal to Minkowski. We also proof that there is only one analytic nonlinear electrodynamics presenting no birefringence.Comment: 11 pages, no figure

    Quantum Non-Demolition Test of Bipartite Complementarity

    Full text link
    We present a quantum circuit that implements a non-demolition measurement of complementary single- and bi-partite properties of a two-qubit system: entanglement and single-partite visibility and predictability. The system must be in a pure state with real coefficients in the computational basis, which allows a direct operational interpretation of those properties. The circuit can be realized in many systems of interest to quantum information.Comment: 4 pages, 2 figure

    Vortex-Antivortex Lattice in Ultra-Cold Fermi Gases

    Full text link
    We discuss ultra-cold Fermi gases in two dimensions, which could be realized in a strongly confining one-dimensional optical lattice. We obtain the temperature versus effective interaction phase diagram for an s-wave superfluid and show that, below a certain critical temperature T_c, spontaneous vortex-antivortex pairs appear for all coupling strengths. In addition, we show that the evolution from weak to strong coupling is smooth, and that the system forms a square vortex-antivortex lattice at a lower critical temperature T_M.Comment: Submitted to Physical Review Letter

    Superfluid and Mott Insulating shells of bosons in harmonically confined optical lattices

    Full text link
    Weakly interacting atomic or molecular bosons in quantum degenerate regime and trapped in harmonically confined optical lattices, exhibit a wedding cake structure consisting of insulating (Mott) shells. It is shown that superfluid regions emerge between Mott shells as a result of fluctuations due to finite hopping. It is found that the order parameter equation in the superfluid regions is not of the Gross-Pitaeviskii type except near the insulator to superfluid boundaries. The excitation spectra in the Mott and superfluid regions are obtained, and it is shown that the superfluid shells posses low energy sound modes with spatially dependent sound velocity described by a local index of refraction directly related to the local superfluid density. Lastly, the Berezinskii-Kosterlitz-Thouless transition and vortex-antivortex pairs are discussed in thin (wide) superfluid shells (rings) limited by three (two) dimensional Mott regions.Comment: 11 pages, 9 figures

    Efficacy and safety of anticancer drug combinations: a meta-analysis of randomized trials with a focus on immunotherapeutics and gene-targeted compounds.

    Get PDF
    Hundreds of trials are being conducted to evaluate combination of newer targeted drugs as well as immunotherapy. Our aim was to compare efficacy and safety of combination versus single non-cytotoxic anticancer agents. We searched PubMed (01/01/2001 to 03/06/2018) (and, for immunotherapy, ASCO and ESMO abstracts (2016 through March 2018)) for randomized clinical trials that compared a single non-cytotoxic agent (targeted, hormonal, or immunotherapy) versus a combination with another non-cytotoxic partner. Efficacy and safety endpoints were evaluated in a meta-analysis using a linear mixed-effects model (guidelines per PRISMA Report).We included 95 randomized comparisons (single vs. combination non-cytotoxic therapies) (59.4%, phase II; 41.6%, phase III trials) (29,175 patients (solid tumors)). Combinations most frequently included a hormonal agent and a targeted small molecule (23%). Compared to single non-cytotoxic agents, adding another non-cytotoxic drug increased response rate (odds ratio [OR]=1.61, 95%CI 1.40-1.84)and prolonged progression-free survival (hazard ratio [HR]=0.75, 95%CI 0.69-0.81)and overall survival (HR=0.87, 95%CI 0.81-0.94) (all p<0.001), which was most pronounced for the association between immunotherapy combinations and longer survival. Combinations also significantlyincreased the risk of high-grade toxicities (OR=2.42, 95%CI 1.98-2.97) (most notably for immunotherapy and small molecule inhibitors) and mortality at least possibly therapy related (OR: 1.33, 95%CI 1.15-1.53) (both p<0.001) (absolute mortality = 0.90% (single agent) versus 1.31% (combinations)) compared to single agents. In conclusion, combinations of non-cytotoxic drugs versus monotherapy in randomized cancer clinical trials attenuated safety, but increased efficacy, with the balance tilting in favor of combination therapy, based on the prolongation in survival

    Electromagnetic structure and weak decay of pseudoscalar mesons in a light-front QCD-inspired model

    Full text link
    We study the scaling of the 3S11S0^3S_1-^1S_0 meson mass splitting and the pseudoscalar weak decay constants with the mass of the meson, as seen in the available experimental data. We use an effective light-front QCD-inspired dynamical model regulated at short-distances to describe the valence component of the pseudoscalar mesons. The experimentally known values of the mass splittings, decay constants (from global lattice-QCD averages) and the pion charge form factor up to 4 [GeV/c]2^2 are reasonably described by the modelComment: 27 Pages, 7 eps figures,use revtex

    Evolution from BCS to BKT superfluidity in one-dimensional optical lattices

    Full text link
    We analyze the finite temperature phase diagram of fermion mixtures in one-dimensional optical lattices as a function of interaction strength. At low temperatures, the system evolves from an anisotropic three-dimensional Bardeen-Cooper-Schrieffer (BCS) superfluid to an effectively two-dimensional Berezinskii-Kosterlitz-Thouless (BKT) superfluid as the interaction strength increases. We calculate the critical temperature as a function of interaction strength, and identify the region where the dimensional crossover occurs for a specified optical lattice potential. Finally, we show that the dominant vortex excitations near the critical temperature evolve from multiplane elliptical vortex loops in the three-dimensional regime to planar vortex-antivortex pairs in the two-dimensional regime, and we propose a detection scheme for these excitations.Comment: 4 pages with 2 figure
    corecore