436 research outputs found

    100 GHz Multiple Colliding Pulse Generation From Cleaved Facet-Free Multi-Section Semiconductor Laser Diode

    Get PDF
    We present a monolithically integrated mode-locked laser (MLL) with 25 GHz fundamental repetition rate frequency, which has been designed to operate in a fourth-order colliding regime, to generate 100 GHz. This device has been fabricated within a multi-project wafer (MPW) run in an InP-based active-passive generic foundry. The Fabry-Perot laser resonator, of around 1.66 mm length, is defined by two on-chip reflectors, eliminating the need of cleaved facet. Three saturable absorber sections are symmetrically located by spacing them a quarter of this total length, dividing the cavity into four gain segments. We show that this structure can generate an electrical beat note at 25 GHz as well as 100 GHz, with a linewidth of 350 kHz and 150 kHz, respectively, operating in passive operation regime

    A second transmissible cancer in Tasmanian devils.

    Get PDF
    Clonally transmissible cancers are somatic cell lineages that are spread between individuals via the transfer of living cancer cells. There are only three known naturally occurring transmissible cancers, and these affect dogs, soft-shell clams, and Tasmanian devils, respectively. The Tasmanian devil transmissible facial cancer was first observed in 1996, and is threatening its host species with extinction. Until now, this disease has been consistently associated with a single aneuploid cancer cell lineage that we refer to as DFT1. Here we describe a second transmissible cancer, DFT2, in five devils located in southern Tasmania in 2014 and 2015. DFT2 causes facial tumors that are grossly indistinguishable but histologically distinct from those caused by DFT1. DFT2 bears no detectable cytogenetic similarity to DFT1 and carries a Y chromosome, which contrasts with the female origin of DFT1. DFT2 shows different alleles to both its hosts and DFT1 at microsatellite, structural variant, and major histocompatibility complex (MHC) loci, confirming that it is a second cancer that can be transmitted between devils as an allogeneic, MHC-discordant graft. These findings indicate that Tasmanian devils have spawned at least two distinct transmissible cancer lineages and suggest that transmissible cancers may arise more frequently in nature than previously considered. The discovery of DFT2 presents important challenges for the conservation of Tasmanian devils and raises the possibility that this species is particularly prone to the emergence of transmissible cancers. More generally, our findings highlight the potential for cancer cells to depart from their hosts and become dangerous transmissible pathogens.We thank Bill Brown, Phil Iles, Billie Lazenby, Jacinta Marr, Jane McGee, Sarah Peck, Holly Wiersma and Phil Wise for assistance with sample collection and curation. Adrian Baez-Ortega, Andrew Davis, Jo Hanuszewicz, Gina Kalodimos, Amanda Patchett, Narelle Phillips, Elizabeth Reid Swainscoat, Jim Richley, Rachel Stivicic and Jim Taylor assisted with surveying, laboratory analysis, data processing and display. We are grateful for support received from Mike Stratton, the Wellcome Trust Sanger Institute (WTSI) sequencing and informatics teams and the WTSI Cancer Genome Project. This work was supported by a Wellcome Trust Investigator Award (102942/Z/13/Z) and by grants from the Australian Research Council (ARC-DP130100715; ARC-LP130100218). Support was provided by Dr Eric Guiler Tasmanian Devil Research Grants and by the Save the Tasmanian Devil Program. JMCT was partly supported by a Marie Curie Fellowship (FP7-PEOPLE- 2012-IEF, 328364). Sequences associated with this paper have been deposited in Genbank with accession numbers KT188437 and KT188438

    Personal Drug Selection: Problem-Based Learning in Pharmacology: Experience from a Medical School in Nepal

    Get PDF
    BACKGROUND: At the Manipal College of Medical Sciences, Pokhara, Nepal, Pharmacology is taught during the first four semesters of the undergraduate medical course. Personal or P-drug selection is an important exercise. The present study was carried out to obtain student opinion about the P-drug learning sessions, the assessment examinations, and on the small group dynamics. METHOD: The practical sessions on P-drug selection are carried out in small groups. Student feedback about the session was obtained using focus group discussions. The focus groups were selected to represent both genders and the three main nationalities, Nepalese, Indians, and Sri Lankans. There were four Nepalese, five Indians, and three Sri Lankans. Within each nationality and gender category the students were randomly selected. The respondents were explained the objectives of the study and were invited to participate. Written informed consent was obtained. The discussion lasted around two hours and was conducted in the afternoon in two groups of six students each. The first author (PRS) acted as a facilitator. The responses were recorded and analyzed qualitatively. RESULTS: The overall student opinion was positive. Around 25% (3 respondents) of respondents were confused about whether P-drugs were for a disease or a patient. Group consensus was commonly used to give numerical values for the different criteria. The large number of brands created problems in calculating cost. The students wanted more time for the exercise in the examination. Formative assessment during the learning sessions may be considered. The group members usually got along well. Absenteeism was a problem and not all members put in their full effort. The physical working environment should be improved. CONCLUSIONS: Based on what the students say, the sessions on P-drugs should be continued and strengthened. Modifications in the sessions are required. Sessions during the clinical years and internship training can be considered

    CloVR: A virtual machine for automated and portable sequence analysis from the desktop using cloud computing

    Get PDF
    Next-generation sequencing technologies have decentralized sequence acquisition, increasing the demand for new bioinformatics tools that are easy to use, portable across multiple platforms, and scalable for high-throughput applications. Cloud computing platforms provide on-demand access to computing infrastructure over the Internet and can be used in combination with custom built virtual machines to distribute pre-packaged with pre-configured software. We describe the Cloud Virtual Resource, CloVR, a new desktop application for push-button automated sequence analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual machine (VM) that provides several automated analysis pipelines for microbial genomics, including 16S, whole genome and metagenome sequence analysis. The CloVR VM runs on a personal computer, utilizes local computer resources and requires minimal installation, addressing key challenges in deploying bioinformatics workflows. In addition CloVR supports use of remote cloud computing resources to improve performance for large-scale sequence processing. In a case study, we demonstrate the use of CloVR to automatically process next-generation sequencing data on multiple cloud computing platforms. The CloVR VM and associated architecture lowers the barrier of entry for utilizing complex analysis protocols on both local single- and multi-core computers and cloud systems for high throughput data processing.https://doi.org/10.1186/1471-2105-12-35
    • 

    corecore