49 research outputs found

    Quantitative Assessment of the Sensitivity of Various Commercial Reverse Transcriptases Based on Armored HIV RNA

    Get PDF
    The in-vitro reverse transcription of RNA to its complementary DNA, catalyzed by the enzyme reverse transcriptase, is the most fundamental step in the quantitative RNA detection in genomic studies. As such, this step should be as analytically sensitive, efficient and reproducible as possible, especially when dealing with degraded or low copy RNA samples. While there are many reverse transcriptases in the market, all claiming to be highly sensitive, there is need for a systematic independent comparison of their applicability in quantification of rare RNA transcripts or low copy RNA, such as those obtained from archival tissues.We performed RT-qPCR to assess the sensitivity and reproducibility of 11 commercially available reverse transcriptases in cDNA synthesis from low copy number RNA levels. As target RNA, we used a serially known number of Armored HIV RNA molecules, and observed that 9 enzymes we tested were consistently sensitive to ∌1,000 copies, seven of which were sensitive to ∌100 copies, while only 5 were sensitive to ∌10 RNA template copies across all replicates tested. Despite their demonstrated sensitivity, these five best performing enzymes (Accuscript, HIV-RT, M-MLV, Superscript III and Thermoscript) showed considerable variation in their reproducibility as well as their overall amplification efficiency. Accuscript and Superscript III were the most sensitive and consistent within runs, with Accuscript and Superscript II ranking as the most reproducible enzymes between assays.We therefore recommend the use of Accuscript or Superscript III when dealing with low copy number RNA levels, and suggest purification of the RT reactions prior to downstream applications (eg qPCR) to augment detection. Although the results presented in this study were based on a viral RNA surrogate, and applied to nucleic acid lysates derived from archival formalin-fixed paraffin embedded tissue, their relative performance on RNA obtained from other tissue types may vary, and needs future evaluation

    High Resolution Melt analysis for mutation screening in PKD1 and PKD2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disorder. It is characterized by focal development and progressive enlargement of renal cysts leading to end-stage renal disease. <it>PKD1 </it>and <it>PKD2 </it>have been implicated in ADPKD pathogenesis but genetic features and the size of <it>PKD1 </it>make genetic diagnosis tedious.</p> <p>Methods</p> <p>We aim to prove that high resolution melt analysis (HRM), a recent technique in molecular biology, can facilitate molecular diagnosis of ADPKD. We screened for mutations in <it>PKD1 </it>and <it>PKD2 </it>with HRM in 37 unrelated patients with ADPKD.</p> <p>Results</p> <p>We identified 440 sequence variants in the 37 patients. One hundred and thirty eight were different. We found 28 pathogenic mutations (25 in <it>PKD1 </it>and 3 in <it>PKD2 </it>) within 28 different patients, which is a diagnosis rate of 75% consistent with literature mean direct sequencing diagnosis rate. We describe 52 new sequence variants in <it>PKD1 </it>and two in <it>PKD2</it>.</p> <p>Conclusion</p> <p>HRM analysis is a sensitive and specific method for molecular diagnosis of ADPKD. HRM analysis is also costless and time sparing. Thus, this method is efficient and might be used for mutation pre-screening in ADPKD genes.</p
    corecore