1,083 research outputs found
On the linear response and scattering of an interacting molecule-metal system
A many-body Green's function approach to the microscopic theory of
plasmon-enhanced spectroscopy is presented within the context of localized
surface-plasmon resonance spectroscopy and applied to investigate the coupling
between quantum-molecular and classical-plasmonic resonances in
monolayer-coated silver nanoparticles. Electronic propagators or Green's
functions, accounting for the repeated polarization interaction between a
single molecule and its image in a nearby nanoscale metal, are explicitly
computed and used to construct the linear-response properties of the combined
molecule-metal system to an external electromagnetic perturbation. Shifting and
finite lifetime of states appear rigorously and automatically within our
approach and reveal an intricate coupling between molecule and metal not fully
described by previous theories. Self-consistent incorporation of this
quantum-molecular response into the continuum-electromagnetic scattering of the
molecule-metal target is exploited to compute the localized surface-plasmon
resonance wavelength shift with respect to the bare metal from first
principles.Comment: under review at Journal of Chemical Physic
Time-dependent quantum many-body theory of identical bosons in a double well: Early time ballistic interferences of fragmented and number entangled states
A time-dependent multiconfigurational self-consistent field theory is
presented to describe the many-body dynamics of a gas of identical bosonic
atoms confined to an external trapping potential at zero temperature from first
principles. A set of generalized evolution equations are developed, through the
time-dependent variational principle, which account for the complete and
self-consistent coupling between the expansion coefficients of each
configuration and the underlying one-body wave functions within a restricted
two state Fock space basis that includes the full effects of the condensate's
mean field as well as atomic correlation. The resulting dynamical equations are
a classical Hamiltonian system and, by construction, form a well-defined
initial value problem. They are implemented in an efficient numerical
algorithm. An example is presented, highlighting the generality of the theory,
in which the ballistic expansion of a fragmented condensate ground state is
compared to that of a macroscopic quantum superposition state, taken here to be
a highly entangled number state, upon releasing the external trapping
potential. Strikingly different many-body matter-wave dynamics emerge in each
case, accentuating the role of both atomic correlation and mean-field effects
in the two condensate states.Comment: 16 pages, 5 figure
Finsler geodesics in the presence of a convex function and their applications
We obtain a result about the existence of only a finite number of geodesics
between two fixed non-conjugate points in a Finsler manifold endowed with a
convex function. We apply it to Randers and Zermelo metrics. As a by-product,
we also get a result about the finiteness of the number of lightlike and
timelike geodesics connecting an event to a line in a standard stationary
spacetime.Comment: 16 pages, AMSLaTex. v2 is a minor revision: title changed, references
updated, typos fixed; it matches the published version. This preprint and
arXiv:math/0702323v3 [math.DG] substitute arXiv:math/0702323v2 [math.DG
Multiconfigurational Hartree-Fock theory for identical bosons in a double well
Multiconfigurational Hartree-Fock theory is presented and implemented in an
investigation of the fragmentation of a Bose-Einstein condensate made of
identical bosonic atoms in a double well potential at zero temperature. The
approach builds in the effects of the condensate mean field and of atomic
correlations by describing generalized many-body states that are composed of
multiple configurations which incorporate atomic interactions. Nonlinear and
linear optimization is utilized in conjunction with the variational and
Hylleraas-Undheim theorems to find the optimal ground and excited states of the
interacting system. The resulting energy spectrum and associated eigenstates
are presented as a function of double well barrier height. Delocalized and
localized single configurational states are found in the extreme limits of the
simple and fragmented condensate ground states, while multiconfigurational
states and macroscopic quantum superposition states are revealed throughout the
full extent of barrier heights. Comparison is made to existing theories that
either neglect mean field or correlation effects and it is found that
contributions from both interactions are essential in order to obtain a robust
microscopic understanding of the condensate's atomic structure throughout the
fragmentation process.Comment: 21 pages, 13 figure
PRIMA-1 induces autophagy in cancer cells carrying mutant or wild type p53.
PRIMA-1 is a chemical compound identified as a growth suppressor of tumor cells expressing mutant p53. We previously found that in the MDA-MB-231 cell line expressing high level of the mutant p53-R280K protein, PRIMA-1 induced p53 ubiquitination and degradation associated to cell death. In this study, we investigated the ability of PRIMA-1 to induce autophagy in cancer cells. In MDA-MB-231 and HCT116 cells, expressing mutant or wild type p53, respectively, autophagy occurred following exposure to PRIMA-1, as shown by acridine orange staining, anti-LC3 immunofluorescence and immunoblots, as well as by electron microscopy. Autophagy was triggered also in the derivative cell lines knocked-down for p53, although to a different extent than in the parental cells expressing mutant or wild type p53. In particular, while wild type p53 limited PRIMA-1 induced autophagy, mutant p53 conversely promoted autophagy, thus sustaining cell viability following PRIMA-1 treatment. Therefore, the autophagic potential of PRIMA-1, besides being cell context dependent, could be modulated in a different way by the presence of wild type or mutant p53. Furthermore, since both cell lines lacking p53 were more sensitive to the cytotoxic effect of PRIMA-1 than the parental ones, our findings suggest that a deregulated autophagy may favor cell death induced by this drug
Effect of two different source of forage on the organic matter digestibility in Mediterranean Italian Buffalo cows
The present study aimed to evaluate the influence of two different source of forage (haysilage and hay) during the lactation on organic matter digestibility (OMD) in buffalo cows. Lactating buffaloes (n = 40) at 29.6 days in milk (DIM) were equally divided as function of previous milk yield into Group 1 (meadow hay, n = 20) and Group 2 [haysilage (Lolium multiflorum), n = 20]. The diets were isoenergetic [0.92 milk unit forage (MUF) on dry matter basis] and isoproteic (16.2 % crude protein on dry matter basis) and administred as total mixed ration (TMR). From all the buffaloes, for each group and in two sampling time (first sampling, DIM = 74.0 and second sampling, DIM = 129.0) the faeces were collected in order to evaluate the in vivo digestibility. Overall the trial, the subjects fed haysilage showed higher OMD than those fed hay (66.1 vs 45.7; P<0.01), moreover the in vivo digestibility was affected by the DIM, in particular in the group fed hay (40.6 vs 53.4; P<0.0001, respectively). This work underlines the importance of the administration of the haysilage (Lolium multiflorum) as source of high quality forage because it gives, overall the lactation, more nutritive principles compared with meadow hay
A methodology for the customization of hinged ankle-foot orthoses based on in vivo helical axis calculation with 3D printed rigid shells
This study aims to develop techniques for ankle joint kinematics analysis using motion capture based on stereophotogrammetry. The scope is to design marker attachments on the skin for a most reliable identification of the instantaneous helical axis, to be targeted for the fabrication of customized hinged ankle-foot orthoses. These attachments should limit the effects of the experimental artifacts, in particular the soft-tissue motion artifact, which affect largely the accuracy of any in vivo ankle kinematics analysis. Motion analyses were carried out on two healthy subjects wearing customized rigid shells that were designed through 3D scans of the subjects’ lower limbs and fabricated by additive manufacturing. Starting from stereophotogrammetry data collected during walking and dorsi-plantarflexion motor tasks, the instantaneous and mean helical axes of ankle joint were calculated. The customized shells matched accurately the anatomy of the subjects and allowed for the definition of rigid marker clusters that improved the accuracy of in vivo kinematic analyses. The proposed methodology was able to differentiate between subjects and between the motor tasks analyzed. The observed position and dispersion of the axes were consistent with those reported in the literature. This methodology represents an effective tool for supporting the customization of hinged ankle-foot orthoses or other devices interacting with human joints functionality
Topological classification of black Hole: Generic Maxwell set and crease set of horizon
The crease set of an event horizon or a Cauchy horizon is an important object
which determines qualitative properties of the horizon. In particular, it
determines the possible topologies of the spatial sections of the horizon. By
Fermat's principle in geometric optics, we relate the crease set and the
Maxwell set of a smooth function in the context of singularity theory. We
thereby give a classification of generic topological structure of the Maxwell
sets and the generic topologies of the spatial section of the horizon.Comment: 22 pages, 6 figure
Cell death and impairment of glucose-stimulated insulin secretion induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the beta-cell line INS-1E.
The aim of this research was to characterize 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity on the insulin-secreting beta-cell line INS-1E. A sharp decline of cell survival (below 20%) was observed after 1 h exposure to TCDD concentrations between 12.5 and 25 nM. Ultrastructurally, beta-cell death was characterized by extensive degranulation, appearance of autophagic vacuoles, and peripheral nuclear condensation. Cytotoxic concentrations of TCDD rapidly induced a dose-dependent increase in intracellular calcium concentration. Blocking calcium entry by EGTA significantly decreased TCDD cytotoxicity. TCDD was also able to rapidly induce mitochondrial depolarization. Interestingly, 1 h exposition of INS-1E cells to very low TCDD concentrations (0.05-1 nM) dramatically impaired glucose-stimulated but not KCl-stimulated insulin secretion. In conclusion, our results clearly show that TCDD exerts a direct beta-cell cytotoxic effect at concentrations of 15-25 nM, but also markedly impairs glucose-stimulated insulin secretion at concentrations 20 times lower than these. On the basis of this latter observation we suggest that pancreatic beta-cells could be considered a specific and sensitive target for dioxin toxicity
Synthesis and preliminary biological profile of new NO-donor tolbutamide analogues.
We describe a new class of NO-donor hypoglycemic products obtained by joining tolbutamide, a typical hypoglycemic sulfonylurea, with a NO-donor moiety through a hard link. As NO-donors we chose either furoxan (1,2,5-oxadiazole 2-oxide) derivatives or the classical nitrooxy function. A preliminary biological characterization of these compounds, including stimulation of insulin release from cultured rat pancreatic β-cells and in vitro vasodilator and anti-aggregatory activities, is reported
- …