485 research outputs found

    Impact of COVID-19 on maxillofacial surgery practice: a worldwide survey

    Get PDF
    The outbreak of coronavirus disease 2019 (COVID-19) is rapidly changing our habits. To date, April 12, 2020, the virus has reached 209 nations, affecting 1.8 million people and causing more than 110,000 deaths. Maxillofacial surgery represents an example of a specialty that has had to adapt to this outbreak, because of the subspecialties of oncology and traumatology. The aim of this study was to examine the effect of this outbreak on the specialty of maxillofacial surgery and how the current situation is being managed on a worldwide scale. To achieve this goal, the authors developed an anonymous questionnaire which was posted on the internet and also sent to maxillofacial surgeons around the globe using membership lists from various subspecialty associations. The questionnaire asked for information about the COVID-19 situation in the respondent's country and in their workplace, and what changes they were facing in their practices in light of the outbreak. The objective was not only to collect and analyse data, but also to highlight what the specialty is facing and how it is handling the situation, in the hope that this information will be useful as a reference in the future, not only for this specialty, but also for others, should COVID-19 or a similar global threat arise again

    Images in cardiovascular medicine : multiphoton microscopy for three-dimensional imaging of lymphocyte recruitment into apolipoprotein-E-deficient mouse carotid artery

    Get PDF
    Two recent elegant studies have shown that in apolipoprotein-E– deficient mice, the lamina adventitia is a major site of arterial wall inflammation associated with lymphocyte infiltration into atherosclerotic arteries and with formation of adventitial lymphoid-like tissues.1,2 These results suggest that lymphocyte responses in the lamina adventitia may play a crucial role in atherosclerosis development.1,

    A contribution to study the immigration from Sub Saharan Africa to Argentina

    Get PDF
    Si bien en la Argentina poseemos una inmigración desde el África subsahariana a partir de fines del siglo XIX y principios del XX, como la de los sudafricanos y los caboverdeanos, esta nueva inmigración, de la última década del siglo XX y la primera del XXI, que llega desde Senegal, Nigeria, Camerún, Ghana, entre otros países, aparece en un contexto histórico y político diferente, enfrentada a regímenes jurídicos y estatutos administrativos cada vez más restrictivos, enmarcada en la creciente globalización de la economía.Este trabajo constituye una parte de los primeros resultados de la investigación iniciada en el año 2009 sobre esta migración desde una perspectiva antropológica, sumando los aportes que nos brindan la historia, la ciencia política y la demografía –entre otras disciplinas–, haciendo uso de los materiales producidos por científicos sociales africanos y no africanos, con el convencimiento de que en el diálogo de miradas se pueden superar las propias limitaciones.Even though in Argentina we have immigrants from Sub Saharan Africa arriving at the end of the Nineteenth Century and beginning of the Twentieth Century such as those from South Africa and Cape Verde, this new immigration from Senegal, Nigeria, Cameroon, Ghana, among other countries, during the last decade of the Twentieth Century and first decade of the Twenty-first Century appears in a different historical and political context. This new migration is facing legal regimes and increasingly restrictive administrative by-laws, framed in the growing economic globalization.This work is part of the first results of a research on this migration from an anthropological perspective. This study, which began in 2009, takes into account contributions made by history, political sciences, demography, among other disciplines, making use of articles written by African and Non-African social scientists. We are convinced that in this exchange of views our limitations may be overcome

    Perivascular mast cells regulate vein graft neointimal formation and remodeling

    Get PDF
    Objective. Emerging evidence suggests an important role for mast cells in vein graft failure. This study addressed the hypothesis that perivascular mast cells regulate in situ vascular inflammatory and proliferative responses and subsequent vein graft neointimal lesion formation, using an optimized local mast cell reconstitution method. Methods and Results. Neointimal hyperplasia was induced by insertion of a vein graft into the right carotid artery in wild type and mast cell deficient KitW−sh/W−sh mice. In some experiments, mast cells were reconstituted systemically (tail vein injection of bone marrow-derived mast cells) or locally (directly into the right neck area) prior to vein grafting. Vein graft neointimal lesion formation was significantly (P < 0.05) reduced in KitW−sh/W−sh mice. Mast cell deficiency reduced the number of proliferating cells, and inhibited L-selectin, CCL2, M-CSF and MIP-3α expression in the vein grafts. Local but not systemic mast cell reconstitution restored a perivascular mast cell population that subsequently promoted neointimal formation in mast cell deficient mice. Conclusion. Our data demonstrate that perivascular mast cells play a key role in promoting neointima formation by inducing local acute inflammatory and proliferative responses. These results suggest that ex vivo intraoperative targeting of mast cells may have therapeutic potential for the prevention of pathological vein graft remodeling

    Inhibition of in-stent stenosis by oral administration of bindarit in porcine coronary arteries

    Get PDF
    <p><b>Objective:</b> We have previously demonstrated that bindarit, a selective inhibitor of monocyte chemotactic proteins (MCPs), is effective in reducing neointimal formation in rodent models of vascular injury by reducing smooth muscle cell proliferation and migration and neointimal macrophage content, effects associated with the inhibition of MCP-1/CCL2 production. The aim of the current study was to evaluate the efficacy of bindarit on in-stent stenosis in the preclinical porcine coronary stent model.</p> <p><b>Methods and Results:</b> One or 2 bare metal stents (Multi-Link Vision, 3.5 mm) were deployed (1:1.2 oversize ratio) in the coronary arteries of 42 pigs (20 bindarit versus 22 controls). Bindarit (50 mg/kg per day) was administered orally from 2 days before stenting until the time of euthanasia at 7 and 28 days. Bindarit caused a significant reduction in neointimal area (39.4%, P<0.001, n=9 group), neointimal thickness (51%, P<0.001), stenosis area (37%, P<0.001), and inflammatory score (40%, P<0.001) compared with control animals, whereas there was no significant difference in the injury score between the 2 groups. Moreover, treatment with bindarit significantly reduced the number of proliferating cells (by 45%, P<0.05; n=6 group) and monocyte/macrophage content (by 55%, P<0.01; n=5–6 group) in stented arteries at day 7 and 28, respectively. These effects were associated with a significant (P<0.05) reduction of MCP-1 plasma levels at day 28. In vitro data showed that bindarit (10–300 micromol/L) reduced tumor necrosis factor-alpha (50 ng/mL)–induced pig coronary artery smooth muscle cell proliferation and inhibited MCP-1 production.</p> <p><b>Conclusion:</b> Our results show the efficacy of bindarit in the prevention of porcine in-stent stenosis and support further investigation for clinical application of this compound.</p&gt

    Comparison between Eight-Axis Articulated Robot and Five-Axis CNC Gantry Laser Metal Deposition Machines for Fabricating Large Components

    Get PDF
    Featured Application: Laser metal deposition of large axisymmetric components. Laser metal deposition (LMD) is an additive manufacturing (AM) process capable of producing large components for the aerospace and oil and gas industries. This is achieved by mounting the deposition head on a motion system, such as an articulated robot or a gantry computer numerical control (CNC) machine, which can scan large volumes. Articulated robots are more flexible and less expensive than CNC machines, which on the other hand, are more accurate. This study compares two LMD systems with different motion architectures (i.e., an eight-axis articulated robot and a five-axis CNC gantry machine) in producing a large gas turbine axisymmetric component. The same process parameters were applied to both machines. The deposited components show no significant differences in geometry, indicating that the different performances in terms of accuracy of the two machines do not influence the outcome. The findings indicate that LMD can consistently produce large-scale axisymmetric metal components with both types of equipment. For such an application, the user has the option of using an articulated robot when flexibility and cost are essential, such as in a research context, or a CNC machine where ease of programming and process standardization are important elements, such as in an industrial environment

    Enhancing productivity and efficiency in conventional laser metal deposition process for Inconel 718 – Part II: advancing the process performance

    Get PDF
    This paper is the second part of a work focused on optimizing the performance of conventional Laser Metal Deposition (C-LMD) process for Inconel 718 (IN718). In Part I, through an extensive experimental campaign on single tracks, the interplay between process parameters and their impact on the deposition rate, powder catchment efficiency, and clad geometry is examined. The parameters investigated include laser power, scan speed, powder feed rate, and standoff distance. By systematically adjusting these parameters, the aim is to identify optimal conditions that maximize productivity while maintaining a favorable clad shape for multi-pass multi-layer depositions. Part II starts from the findings and results of Part I by continuing the optimization on thick wall structures. These are utilized to assess the effect of 3D geometrical process parameters, specifically hatch spacing and Z-step, on process performance and stability. Based on the findings, further optimization procedure is presented, pushing the boundaries of the C-LMD process for IN718. By fine-tuning the process parameters, the capability of the C-LMD process to deposit fully dense IN718 with a productivity of 1500 g/h and a powder catchment efficiency of 70% is demonstrated. These results highlight the potential of C-LMD as a viable manufacturing technique for efficiently fabricating large components. Overall, this study contributes to a deeper understanding of the relationship between process parameters and performance in C-LMD for IN718. The insights gained from this research can guide the development of efficient and cost-effective LMD strategies, facilitating the practical implementation of this process in various industries

    Enhancing productivity and efficiency in conventional laser metal deposition process for Inconel 718 - part I: the effects of the process parameters

    Get PDF
    The sustainable energy transition has spurred the development of technologies that minimize material and energy waste, such as additive manufacturing (AM). Laser metal deposition (LMD) is a promising AM technique, but its complexity and limited automation hinder its implementation in production chains. To enhance productivity, the high deposition rate LMD (HDR-LMD) technology has been developed, requiring advanced equipment and powerful laser sources. In contrast, the conventional LMD (C-LMD) process is simpler and less expensive to implement. This study aims to optimize the productivity and efficiency of C-LMD by adjusting laser power, scan speed, powder feed rate, and standoff distance on Inconel 718 single tracks. An innovative approach eliminates the need for cutting specimens to evaluate single tracks, allowing comprehensive geometric and performance characterization with limited operator involvement, making the analysis quicker and more robust. An extensive experimental campaign was conducted to examine the influence of process parameters on track geometry, productivity, and efficiency. A multi-objective optimization procedure identified parameter combinations maximizing productivity while maintaining high efficiency and desirable clad shape. The study attained deposition rates ranging from 700 to 800 g/h, with powder catchment efficiency ranging between 75 and 90%. These results were achieved using parameters including 1775 W of laser power, scan speeds ranging from 960 to 1140 mm/min, powder feed rates between 810 and 1080 g/h, and standoff distance of 9 mm. The study also clearly indicated that further potential for improving C-LMD process performance may be possible. The findings gathered in this paper are the base for the further optimization presented in the second part of the work, which is focused on multi-pass multi-layer and reaches deposition rates of 1500 g/h, promoting the implementation of C-LMD process at industrial level
    corecore