36 research outputs found

    The therapeutic effect of MIR-125b is enhanced by the prostaglandin endoperoxide synthase 2/cyclooxygenase 2 blockade and hampers ETS1 in the context of the microenvironment of bone metastasis

    Get PDF
    Bone is the most common site for breast cancer spread. In the pro-metastatic cell line 1833, derived from MDA-MB-231 breast adenocarcinoma cells, both hypoxia and hepatocyte growth factor (HGF) influence the effect of miR-125b on ETS proto-oncogene 1 transcription factor (ETS1). The effect of hypoxia inducible factor 1 alpha subunit (HIF1A), known to promote metastatic spread by upregulating prostaglandin endoperoxide synthase 2 (PTGS2), may be dampened by miR-125b targeting PTGS2. Here, we investigated whether miR-125b plays a role in breast cancer metastasis by measuring its activity in response to the chemotherapeutic agent NS-398 in a xenograft model. NS-398 is typically used in the clinic to target PTGS2. We also aimed to describe the molecular mechanisms in vitro, since the enhancement of epithelial properties may favor the efficacy of therapies. We report that in the xenograft model, miR-125b reduced metastasis to the bone. We also report suppression of PTGS2 enhanced survival by decreasing HIF1A in cells within the bone marrow. In 1833 cells transfected with a miR-125b mimic we observed several phenotypic changes including enhancement of the epithelial marker E-cadherin, a reduction of mesenchymal-associated genes and a reduction of WNT-associated stem cell signaling. Our findings suggest that in vivo, key players of the bone microenvironment promoting breast cancer spread are regulated by miR-125b. In future, biological molecules imitating miR-125b may enhance the sensitivity of chemotherapeutic agents used to counteract bone metastases

    Functions and epigenetic regulation of Wwox in bone metastasis from breast carcinoma : Comparison with primary tumors

    Get PDF
    Epigenetic mechanisms influence molecular patterns important for the bone-metastatic process, and here we highlight the role of WW-domain containing oxidoreductase (Wwox). The tumor-suppressor Wwox lacks in almost all cancer types; the variable expression in osteosarcomas is related to lung-metastasis formation, and exogenous Wwox destabilizes HIF-1\u3b1 (subunit of Hypoxia inducible Factor-1, HIF-1) affecting aerobic glycolysis. Our recent studies show critical functions of Wwox present in 1833-osteotropic clone, in the corresponding xenograft model, and in human bone metastasis from breast carcinoma. In hypoxic-bone metastatic cells, Wwox enhances HIF-1\u3b1 stabilization, phosphorylation, and nuclear translocation. Consistently, in bone-metastasis specimens Wwox localizes in cytosolic/perinuclear area, while TAZ (transcriptional co-activator with PDZ-binding motif) and HIF-1\u3b1 co-localize in nuclei, playing specific regulatory mechanisms: TAZ is a co-factor of HIF-1, and Wwox regulates HIF-1 activity by controlling HIF-1\u3b1. In vitro, DNA methylation affects Wwox-protein synthesis; hypoxia decreases Wwox-protein level; hepatocyte growth factor (HGF) phosphorylates Wwox driving its nuclear shuttle, and counteracting a Twist program important for the epithelial phenotype and metastasis colonization. In agreement, in 1833-xenograft mice under DNA-methyltransferase blockade with decitabine, Wwox increases in nuclei/cytosol counteracting bone metastasis with prolongation of the survival. However, Wwox seems relevant for the autophagic process which sustains metastasis, enhancing more Beclin-1 than p62 protein levels, and p62 accumulates under decitabine consistent with adaptability of metastasis to therapy. In conclusion, Wwox methylation as a bone-metastasis therapeutic target would depend on autophagy conditions, and epigenetic mechanisms regulating Wwox may influence the phenotype of bone metastasis

    Cell and signal components of the microenvironment of bone metastasis are affected by hypoxia

    Get PDF
    Bone metastatic cells release bone microenvironment proteins, such as the matricellular protein SPARC (secreted protein acidic and rich in cysteine), and share a cell signaling typical of the bone metabolism controlled by Runx2. The megakaryocytes in the bone marrow engrafted by the metastases seem to be one of the principal microenvironment sources of the biological stimuli, implicated in the formation of an osteoblastic niche, and affecting metastasis phenotype and colonization. Educated platelets in the circulation might derive from megakaryocytes in bone metastasis. The evaluation of predictive markers in the circulating platelets might be useful for the stratification of patients for therapeutic purposes. The hypoxic environment in bone metastasis is one of the key regulators of the network of the biological soluble and structural components of the matrix. In bone metastatic cells under hypoxia, similar patterns of Runx2 and SPARC are observed, both showing downregulation. Conversely, hypoxia induces Endothelin 1, which upregulates SPARC, and these biological stimuli may be considered prognostic markers of bone metastasis in breast carcinoma patients

    Microenvironment stimuli HGF and hypoxia differently affected miR-125b and Ets-1 function with opposite effects on the invasiveness of bone metastatic cells : A comparison with breast carcinoma cells

    Get PDF
    We examined the influence of microenvironment stimuli on molecular events relevant to the biological functions of 1833-bone metastatic clone and the parental MDA-MB231 cells. (i) In both the cell lines, hepatocyte growth factor (HGF) and the osteoblasts\u2019 biological products down regulated nuclear Ets-1-protein level in concomitance with endogenous miR-125b accumulation. In contrast, under hypoxia nuclear Ets-1 was unchanged, notwithstanding the miR-125b increase. (ii) Also, the 1833-cell invasiveness and the expression of Endothelin-1, the target gene of Ets-1/HIF-1, showed opposite patterns under HGF and hypoxia. We clarified the molecular mechanism(s) reproducing the high miR-125b levels with the mimic in 1833 cells. Under hypoxia, the miR-125b mimic maintained a basal level and functional Ets-1 protein, as testified by the elevated cell invasiveness. However, under HGF ectopic miR-125b downregulated Ets-1 protein and cell motility, likely involving an Ets-1-dominant negative form sensible to serum conditions; Ets-1-activity inhibition by HGF implicated HIF-1\u3b1 accumulation, which drugged Ets-1 in the complex bound to the Endothelin-1 promoter. Altogether, 1833-cell exposure to HGF would decrease Endothelin-1 transactivation and protein expression, with the possible impairment of Endothelin-1-dependent induction of E-cadherin, and the reversion towards an invasive phenotype: this was favoured by Ets-1 overexpression, which inhibited HIF-1\u3b1 expression and HIF-1 activity. (iii) In MDA-MB231 cells, HGF strongly and rapidly decreased Ets-1, hampering invasiveness and reducing Ets-1-binding to Endothelin-1 promoter; HIF-1\u3b1 did not form a complex with Ets-1 and Endothelin-1-luciferase activity was unchanged. Overall, depending on the microenvironment conditions and endogenous miR-125b levels, bone-metastatic cells might switch from Ets-1-dependent motility towards colonization/growth, regulated by the balance between Ets-1 and HIF-1

    Molecular basis of anti-inflammatory action of platelet rich plasma on human chondrocytes : mechanisms of NF-kB inhibition via HGF

    Get PDF
    Loss of articular cartilage through injury or disease presents major clinical challenges also because cartilage has very poor regenerative capacity, giving rise to the development of biological approaches. As autologous blood product, platelet-rich plasma (PRP) provides a promising alternative to surgery by promoting safe and natural healing. Here we tested the possibility that PRP might be effective as an anti-inflammatory agent, providing an attractive basis for regeneration of articular cartilage, and two principal observations were done. First, activated PRP in chondrocytes reduced the transactivating activity of NF-kB, critical regulator of the inflammatory process, and decreased the expression of COX2 and CXCR4 target genes. By analyzing a panel of cytokines with different biological significance, in activated PRP we observed increases in hepatocyte growth factor (HGF), interleukin-4 and tumor necrosis factor-alpha (TNF-alpha). HGF and TNF-alpha, by disrupting NF-kB-transactivating activity, were important for the anti-inflammatory function of activated PRP. The key molecular mechanisms involved in PRP-inhibitory effects on NF-kB activity were for HGF the enhanced cellular IkBalpha expression, that contributed to NF-kB-p65 subunit retention in the cytosol and nucleo-cytoplasmic shuttling, and for TNF-alpha the p50/50 DNA-binding causing inhibition of target-gene expression. Second, activated PRP in U937-monocytic cells reduced chemotaxis by inhibiting chemokine transactivation and CXCR4-receptor expression, thus possibly controlling local inflammation in cartilage. In conclusion, activated PRP is a promising biological therapeutic agent, as a scaffold in micro-invasive articular cartilage regeneration, not only for its content of proliferative/differentiative growth factors, but also for the presence of anti-inflammatory agents including HGF

    High SPARC expression starting from dysplasia, associated with breast carcinoma, is predictive for bone metastasis without enhancement of plasma levels

    Get PDF
    In order to become established in the skeleton, metastatic cells disseminating from the breast carcinoma need to acquire organ-specific traits. There are no effective predictors for who will develop bone metastasis to guide long-term predictive therapy. Our purpose was to individuate events critical for bone colonization to make a molecular classification of breast carcinoma useful for bone-metastasis outcome. In dysplasia adjacent to carcinoma and in pair-matched specimens of bone metastasis we examined SPARC expression and localization as well as Endothelin 1/ETAR signals by immunohistochemistry, and the evaluation of plasma levels of SPARC by ELISA was also performed. In patients with breast carcinoma metastasizing to bone, SPARC and Endothelin 1/ETAR axis were highly expressed from dysplasia until bone metastasis, but the SPARC plasma level was as low as that of normal women, in contrast to patients that never develop bone metastasis, suggesting that circulating SPARC was counter adhesive. Altogether, the early identification of SPARC/Endothelin 1/ETAR in dysplastic lesions would be important to devise therapies preventing metastasis engraftment, since often carcinoma cells spread to distant organs at the time or even before patients present with cancer

    Neuron-glia cross talk in rat striatum after transient forebrain ischemia

    Get PDF
    Striatum is highly vulnerable to transient forebrain ischemia induced by the 4 vessel occlusion (4V0) method (Brierley 1976. Pulsinelli et al. 1982, Zini et al. 1990a). Massive degeneration and loss of Nissl-stained neurons occur within 24 hr from an ischemia of long duration (30 min) (Pulsinelli et al. 1982). Neuronal loss is mainly restricted to the lateral part of caudate-putamen (Pulsinelli et al. 1982, Zini et al. 1990a). Cellular alterations include loss of medium-size spiny projection neurons (Pulsinelli et al. 1982, Francis and Pulsinelli 1982), largely corresponding to dopaminoceptive neurons (Benfenati et al. 1989, Zoli et al. 1989), and increase in reactive astrocytes (Pulsinelli et al. 1982, Grimaldi et al. 1990) and microglia (Gehrmann et al. 1982). On the other hand, large cholinergie (Francis and Pulsinelli 1982) and medium-size aspiny somatostatin (SS)/neuropeptide Y (NPY)-containing interneurons are resistant to the ischemic insult (Pulsinelli et al. 1982, Grimaldi et al. 1990). In a few instances, such as in the case of SS and NPY immunoreactivity (IR), the initial loss is followed by full recovery within 7 (SS) or 40 (NPY) days post-ischemia (Grimaldi et al. 1990). However, it is not known whether some kind of recovery is present for the bulk of medium-size spiny projections neurons after the first days post-ischemia

    Hepatocyte growth factor in invasive growth of carcinomas

    No full text
    Hepatocyte growth factor is a multifunctional cytokine of the tumor microenvironment. An important advance in the knowledge of cancer progression has been the appreciation that the tumor invasive phenotype is strongly influenced by microenvironmental stimuli. Malignant tumor cells recruit vasculature and stroma through the production of growth factors and cytokines. The locally activated microenvironment (both cellular and extracellular elements) in turn modifies the proliferative and invasive behavior of the tumor cells. Hepatocyte growth factor accomplishes most of the functions of the invasive program in carcinomas (loss of adhesive junctions, motility, angiogenesis, survival/apoptosis), and may interact with other signals such as hypoxia. The purpose of the present review is to highlight examples of the progress in this area. The influence of hepatocyte growth factors on the carcinoma invasive phenotype is considered by evaluating the gene targets and the network of transcription factors activated in the specific responses
    corecore