146 research outputs found

    Ultrastructure of a hyaluronic acid matrix

    Get PDF
    Freeze-etch replicas of a hylauronic acid matrix were visualized by electron microscopy. In water a coarse branching fibrillar network of hyaluronic acid aggregates was seen. The high solvent permeability of this matrix suggests that the spaces observed are relatively devoid of unaggregated polymer. Addition of calcium disordered the matrix, resulting in a more dispersed felt of polymer

    Absence of mutations in four genes encoding for congenital cataract and expressed in the human brain in Tunisian families with cataract and mental retardation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To identify the genetic defect associated with autosomal recessive congenital cataract (ARCC), mental retardation (MR) and ARCC, MR and microcephaly present in most patients in four Tunisian consanguineous families.</p> <p>Methods</p> <p>We screened four genes implicated in congenital cataract by direct sequencing in two groups of patients; those affected by ARCC associated to MR and those who presented also microcephaly. Among its three genes <it>PAX6</it>, <it>PITX3 </it>and <it>HSF4 </it>are expressed in human brain and one gene <it>LIM2 </it>encodes for the protein MP20 that interact with the protein galectin-3 expressed in human brain and plays a crucial role in its development. All genes were screened by direct sequencing in two groups of patients; those affected by ARCC associated to MR and those who presented also microcephaly.</p> <p>Results</p> <p>We report no mutation in the four genes of congenital cataract and its flanking regions. Only variations that did not segregate with the studied phenotypes (ARCC associated to MR, ARCC associated with MR and microcephaly) are reported. We detected three intronic variations in <it>PAX6 </it>gene: IVS4 -274insG (intron 4), IVS12 -174G>A (intron12) in the four studied families and IVS4 -195G>A (intron 4) in two families. Two substitutions polymorphisms in <it>PITX3 </it>gene: c.439 C>T (exon 3) and c.930 C>A (exon4) in one family. One intronic variation in <it>HSF4 </it>gene: IVS7 +93C>T (intron 7) identified in one family. And three intronic substitutions in <it>LIM2 </it>gene identified in all four studied families: IVS2 -24A>G (intron 2), IVS4 +32C>T (intron 4) and c.*15A>C (3'-downstream sequence).</p> <p>Conclusion</p> <p>Although the role of the four studied genes: <it>PAX6</it>, <it>PITX3</it>, <it>HSF4 </it>and <it>LIM2 </it>in both ocular and central nervous system development, we report the absence of mutations in all studied genes in four families with phenotypes associating cataract, MR and microcephaly.</p

    Revisiting HIV-1 uncoating

    Get PDF
    HIV uncoating is defined as the loss of viral capsid that occurs within the cytoplasm of infected cells before entry of the viral genome into the nucleus. It is an obligatory step of HIV-1 early infection and accompanies the transition between reverse transcription complexes (RTCs), in which reverse transcription occurs, and pre-integration complexes (PICs), which are competent to integrate into the host genome. The study of the nature and timing of HIV-1 uncoating has been paved with difficulties, particularly as a result of the vulnerability of the capsid assembly to experimental manipulation. Nevertheless, recent studies of capsid structure, retroviral restriction and mechanisms of nuclear import, as well as the recent expansion of technical advances in genome-wide studies and cell imagery approaches, have substantially changed our understanding of HIV uncoating. Although early work suggested that uncoating occurs immediately following viral entry in the cell, thus attributing a trivial role for the capsid in infected cells, recent data suggest that uncoating occurs several hours later and that capsid has an all-important role in the cell that it infects: for transport towards the nucleus, reverse transcription and nuclear import. Knowing that uncoating occurs at a later stage suggests that the viral capsid interacts extensively with the cytoskeleton and other cytoplasmic components during its transport to the nucleus, which leads to a considerable reassessment of our efforts to identify potential therapeutic targets for HIV therapy. This review discusses our current understanding of HIV uncoating, the functional interplay between infectivity and timely uncoating, as well as exposing the appropriate methods to study uncoating and addressing the many questions that remain unanswered

    HIV-1 assembly in macrophages

    Get PDF
    The molecular mechanisms involved in the assembly of newly synthesized Human Immunodeficiency Virus (HIV) particles are poorly understood. Most of the work on HIV-1 assembly has been performed in T cells in which viral particle budding and assembly take place at the plasma membrane. In contrast, few studies have been performed on macrophages, the other major target of HIV-1. Infected macrophages represent a viral reservoir and probably play a key role in HIV-1 physiopathology. Indeed macrophages retain infectious particles for long periods of time, keeping them protected from anti-viral immune response or drug treatments. Here, we present an overview of what is known about HIV-1 assembly in macrophages as compared to T lymphocytes or cell lines

    Retroviral matrix and lipids, the intimate interaction

    Get PDF
    Retroviruses are enveloped viruses that assemble on the inner leaflet of cellular membranes. Improving biophysical techniques has recently unveiled many molecular aspects of the interaction between the retroviral structural protein Gag and the cellular membrane lipids. This interaction is driven by the N-terminal matrix domain of the protein, which probably undergoes important structural modifications during this process, and could induce membrane lipid distribution changes as well. This review aims at describing the molecular events occurring during MA-membrane interaction, and pointing out their consequences in terms of viral assembly. The striking conservation of the matrix membrane binding mode among retroviruses indicates that this particular step is most probably a relevant target for antiviral research

    HIV infection of non-dividing cells: a divisive problem

    Get PDF
    Understanding how lentiviruses can infect terminally differentiated, non-dividing cells has proven a very complex and controversial problem. It is, however, a problem worth investigating, for it is central to HIV-1 transmission and AIDS pathogenesis. Here I shall attempt to summarise what is our current understanding for HIV-1 infection of non-dividing cells. In some cases I shall also attempt to make sense of controversies in the field and advance one or two modest proposals

    Preparation and Characterization of Influenza Virus Cores

    No full text
    corecore