5 research outputs found

    FIR Filter for Audio Signals Based on FPGA: Design and Implementation

    Get PDF
    Filters play a vital role in digital signal processing (DSP) applications ranging from Video and image processing to wireless communication. In this paper, Low pass digital finite impulse response (FIR) filter is designed and implemented. Eight coefficients and taps are used in the design. The whole system are coded in VHDL language using modular design approach and implemented in Altera DE1 board. This board has cyclone II Field Programmable Gate Array (FPGA), Codec chip (WM8731), Embedded DSP multipliers and embedded processor support. The design is implemented as three main blocks: Codec initialization block, serial to parallel (S2P) Adapter block and FIR filter block. The blocks are tested and simulated in order to ensure that the result is correct. Finally, the Quartus II software tool is used to evaluate the implementation results and obtain the frequency response of the designed filter

    Real-Time Wireless Network of Mobile Sensor Nodes Based on ZigBee Protocol: Design and Implementation

    Get PDF
    Wireless sensor networks are an evolving technology for a wide range of environments due to its low-cost and importance that has been implemented by the recent delivery of the IEEE 802.15.4 standard (ZigBee standard) for application layers. The benefit of this module is to develop the designing skills on the wireless networks using ZigBee protocol that is providing a standardized base set of solutions for control systems and sensor .In this paper, a wireless network consisting of four mobile sensor nodes is designed and implemented. Thermal sensor is used in each node to measure the temperature. After the temperature was measured correctly, the system is modified in terms of having a better reliability by implementing the CRC technique. Furthermore, a TDMA and CSMA algorithms are applied to the nodes in a way that the four nodes of the network must be able to transmit and receive the data without any collision. The system is applied on a modern embedded board is PICDEM-Z BOARD. This board has excellent features such as high performance core PLCI8F4620, memory and Rf transceiver work with ZigBee protocol. The results show high flexibility and reliability in the measuring and exchanging the data between all the nodes within one second in real time.

    Real-Time Wireless Network of Mobile Sensor Nodes Based on ZigBee Protocol: Design and Implementation

    Get PDF
    Wireless sensor networks are an evolving technology for a wide range of environments due to its low-cost and importance that has been implemented by the recent delivery of the IEEE 802.15.4 standard (ZigBee standard) for application layers. The benefit of this module is to develop the designing skills on the wireless networks using ZigBee protocol that is providing a standardized base set of solutions for control systems and sensor .In this paper, a wireless network consisting of four mobile sensor nodes is designed and implemented. Thermal sensor is used in each node to measure the temperature. After the temperature was measured correctly, the system is modified in terms of having a better reliability by implementing the CRC technique. Furthermore, a TDMA and CSMA algorithms are applied to the nodes in a way that the four nodes of the network must be able to transmit and receive the data without any collision. The system is applied on a modern embedded board is PICDEM-Z BOARD. This board has excellent features such as high performance core PLCI8F4620, memory and Rf transceiver work with ZigBee protocol. The results show high flexibility and reliability in the measuring and exchanging the data between all the nodes within one second in real time.

    Quantum Genetic Algorithm for Highly Constrained Optimization Problems

    Get PDF
    Quantum computing appears as an alternative solution for solving computationally intractable problems. This paper presents a new constrained quantum genetic algorithm designed specifically for identifying the extreme value of a highly constrained optimization problem, where the search space size _database is massive and unsorted_ cannot be handled by the currently available classical or quantum processor, called the highly constrained quantum genetic algorithm (HCQGA). To validate the efficiency of the suggested quantum method, maximizing the energy efficiency with respect to the target user bit rate of an uplink multi-cell massive multiple-input and multiple- output (MIMO) system is considered as an application. Simulation results demonstrate that the proposed HCQGA converges rapidly to the optimum solution compared with its classical benchmark

    Energy efficiency optimisation in massive multiple‐input, multiple‐output network for 5G applications using new quantum genetic algorithm

    No full text
    Abstract Devising efficient optimisation methods has been a subject of great research attention since current evolving trends in communication networks, machine learning, and other cutting‐edge systems that need a fast and accurate optimised computational model. Classical computers became incapable of handling new optimisation problems posed by newly emerging trends. Quantum optimisation algorithms appear as alternative solutions. The existing bottleneck that restricts the use of the newly developed quantum strategies is the limited qubit size of the available quantum computers (the size of the most recent universal quantum computer is 433 qubits). A new quantum genetic algorithm (QGA) is proposed that handles the presented problem. A quantum extreme value searching algorithm and quantum blind computing framework are utilised to extend the search capabilities of the GA. The quantum genetic strategy is exploited to maximise energy efficiency at full spectral efficiency of massive multiple‐input, multiple‐output (M‐MIMO) technology as a toy example for pointing out the efficiency of the presented quantum strategy. The authors run extensive simulations and prove how the presented quantum method outperforms the existing classical genetic algorithm
    corecore