5,643 research outputs found

    Exact ground states of spin-2 chains

    Full text link
    We use the matrix product approach to construct all optimum ground states of general anisotropic spin-2 chains with nearest neighbour interactions and common symmetries. These states are exact ground states of the model and their properties depend on up to three parameters. We find three different antiferromagnetic Haldane phases, one weak antiferromagnetic and one weak ferromagnetic phase. The antiferromagnetic phases can be described as spin liquids with exponentially decaying correlation functions. The variety of phases found with the matrix product ansatz also gives insight into the behaviour of spin chains with arbitrary higher spins.Comment: 7 pages, 2 figures, to be published in europhysics letters, uses epl.cl

    On the nature of pressureā€induced coordination changes in silicate melts and glasses

    Get PDF
    Progressive decreases in the Siā€Oā€Si angles between cornerā€shared silicate tetrahedra in glasses and melts with increasing pressure can lead to arrangements of oxygen atoms that can be described in terms of edgeā€ or faceā€shared octahedra. This mechanism of compression can account for the gradual, continuous increases in melt and glass densities from values at low pressure that indicate dominantly tetrahedral coordination of Si to values at several tens of GPa that suggest higher coordination. It also can explain the unquenchable nature of octahedrally coordinated Si in glasses, the absence of spectroscopically detectable octahedrally coordinated Si in glasses until they are highly compressed, the gradual and reversible transformation from tetrahedral to octahedral coordination in glasses once the transformation is detectable spectroscopically, and the fact that this transformation takes place in glass at room temperature. It may also have relevance to pressureā€induced transformations from crystalline to glassy phases, the difficulty in retrieving some metastable high pressure crystalline phases at low pressure, and the observed differences between the pressures required for phase transformations in shock wave experiments on glasses and crystals

    A sensitive optical pyrometer for shock-temperature measurements

    Get PDF
    A new optical system was used to determine temperatures above 2400 K in shocked materials by measuring the spectral radiance of sub-microsecond pulses of light emitted from initially transparent solid samples in the visible and near infrared (450 to 900 nm). The high sensitivity of this optical pyrometer is attributed to the small number of channels, large aperture (0.03 steradian), the large bandwidth per channel (40 nm), and large photodiode detection area (0.2 sq cm). Improved calibration techniques reduce systematic errors encountered in previous shock-temperature experiments

    Shock-induced CO2 loss from CaCO3: Implications for early planetary atmospheres

    Get PDF
    Recovered samples from shock recovery experiments on single crystal calcite were subjected to thermogravimetric analysis to determine the amount of post-shock CO2, the decarbonization interval and the activation energy, for the removal of remaining CO2 in shock-loaded calcite. Comparison of post-shock CO2 with that initially present determines shock-induced CO2 loss as a function of shock pressure. Incipient to complete CO2 loss occurs over a pressure range of approximately 10 to approximately 70 GPa. Optical and scanning electron microscopy reveal structural changes, which are related to the shock-loading. The occurrence of dark, diffuse areas, which can be resolved as highly vesicular areas as observed with a scanning electron microscope are interpreted as representing quenched partial melts, into which shock-released CO2 was injected. The experimental results are used to constrain models of shock-produced, primary CO2 atmospheres on the accreting terrestrial planets

    From AMANDA to IceCube

    Full text link
    The first string of the neoteric high energy neutrino telescope IceCube successfully began operating in January 2005. It is anticipated that upon completion the new detector will vastly increase the sensitivity and extend the reach of AMANDA to higher energies. A discussion of the IceCube's discovery potential for extra-terrestrial neutrinos, together with the prospects of new physics derived from the ongoing AMANDA research will be the focus of this paper. Preliminary results of the first antarctic high energy neutrino telescope AMANDA searching in the muon neutrino channel for localized and diffuse excess of extra-terrestrial neutrinos will be reviewed using data collected between 2000 and 2003. Neutrino flux limits obtained with the all-flavor dedicated UHE and cascade analyses will be described. A first neutrino spectrum above one TeV in agreement with atmospheric neutrino flux expectations and no extra-terrestrial contribution will be presented, followed by a discussion of a limit for neutralino CDM candidates annihilating in the center of the Sun.Comment: 15 pages, 8 figures Invited talk contribution at 5th International Conference on Non-accelerator New Physics (NANP 05), Dubna, Russia, 20-25 Jun 200

    Shock temperatures in anorthite glass

    Get PDF
    Temperatures of CaAl2Si2O8 (anorthite glass) shocked to pressures between 48 and 117 GPa were measured in the range from 2500 to 5600 K, using optical pyrometry techniques. The pressure dependence of the shock temperatures deviates significantly from predictions based on a single high pressure phase. At least three phase transitions, at pressures of about 55, 85, and 100 GPa and with transition energies of about 0.5 MJ/kg each (approximately 1.5 MJ/kg total) are required to explain the shock temperature data. The phase transition at 100 GPa can possibly be identified with the stishovite melting transition. Theoretical models of the time dependence of the thermal radiation from the shocked anorthite based on the geometry of the experiment and the absorptive properties of the shocked material yields good agreement with observations, indicating that it is not necessary to invoke intrinsic time dependences to explain the data in many cases

    Dynamic tensile-failure-induced velocity deficits in rock

    Get PDF
    Planar impact experiments were employed to induce dynamic tensile failure in Bedford limestone. Rock discs were impacted with aluminum and polymethyl methacralate (PMMA) flyer plates at velocities of 10 to 25 m/s. Tensile stress magnitudes and duration were chosen so as to induce a range of microcrack growth insufficient to cause complete spalling of the samples. Ultrasonic P- and S-wave velocities of recovered targets were compared to the velocities prior to impact. Velocity reduction, and by inference microcrack production, occurred in samples subjected to stresses above 35 MPa in the 1.3 Ī¼s PMMA experiments and 60 MPa in the 0.5 Ī¼s aluminum experiments. Using a simple model for the time-dependent stress-intensity factor at the tips of existing flaws, apparent fracture toughnesses of 2.4 and 2.5 MPa m^(Ā½) are computed for the 1.3 and 0.5 Ī¼s experiments. These are a factor of āˆ¼ 2 to 3 greater than quasi-static values. The greater dynamic fracture toughness observed may result from microcrack interaction during tensile failure. Data for water-saturated and dry targets are indistinguishable

    Impact induced dehydration of serpentine and the evolution of planetary atmospheres

    Get PDF
    Shock recovery experiments in the 25 to 45 GPa range on antigorite serpentine determine the amount of shock-induced loss of structural water as a function of shock pressure. Infrared absorption spectra of shock recovered samples demonstrate systematic changes in the amount of structural water and molecular, surface adsorbed water. These yield qualitative estimates of shock-induced water loss and demonstrate that a portion of the shock released structural water is readsorbed on interfacial grain surfaces. Determination of the post-shock water content of the shocked samples relates shock-induced water loss and shock pressure. Based on the present results and theoretical predictions, we conclude that shock pressures of from 20 to āˆ¼60 GPa induce incipient to complete water loss, respectively. This result agrees closely with theoretical estimates for total dehydration. The dehydration interval and the activation energies for dehydration in shocked samples decrease systematically with increasing shock pressure as experienced by the sample. We believe the present experiments are applicable to describing dehydration processes of serpentine-like minerals in the accretional environment of the terrestrial planets. We conclude that complete loss of structural water in serpentine could have occurred from accretional impacts of āˆ¼3 km/sec when earth and Venus have grown to about 50% of their final size. Accreting planetesimals, impacting Mars, never reached velocities sufficient for complete dehydration of serpentine. Our results support a model in which an impact generated atmosphere/hydrosphere forms while the earth is accreting
    • ā€¦
    corecore