5,332 research outputs found

    Habitat degradation and predators have independent trait-mediated effects on prey

    Get PDF
    Coral reefs are degrading globally leading to a catastrophic loss of biodiversity. While shifts in the species composition of communities have been well documented associated with habitat change, the mechanisms that underlie change are often poorly understood. Our study experimentally examines the effects of coral degradation on the trait-mediated effects of predators on the morphology, behaviour and performance of a juvenile coral reef fish. Juvenile damselfish were exposed to predators or controls (omnivore or nothing) in seawater that had flowed over either live or dead-degraded coral over a 45d period. No interaction between water source and predator exposure was found. However, fish exposed to degraded water had larger false eyespots relative to the size of their true eyes, and were more active, both of which may lead to a survival advantage. Non-consumptive effects of predators on prey occurred regardless of water source and included longer and deeper bodies, large false eyespots that may distract predator strikes away from the vulnerable head region, and shorter latencies in their response to a simulated predator strike. Research underscores that phenotypic plasticity may assist fishes in coping with habitat degradation and promote greater resilience to habitat change than may otherwise be predicted

    Impact of ocean warming on a coral reef fish learning and memory

    Get PDF
    Tropical ectotherms are highly sensitive to environmental warming, especially coral reef fishes, which are negatively impacted by an increase of a few degrees in ocean temperature. However, much of our understanding on the thermal sensitivity of reef fish is focused on a few traits (e.g., metabolism, reproduction) and we currently lack knowledge on warming effects on cognition, which may endanger decision-making and survival. Here, we investigated the effects of warming on learning and memory in a damselfish species, Acanthochromis polyacanthus. Fish were held at 28–28.5◦C (control group), 30–30.5◦C (moderate warming group) or 31.5–32◦C (high warming group) for 2 weeks, and then trained to associate a blue tag (cue) to the presence of a conspecific (reward). Following 20 training trials (5 days), fish were tested for associative learning (on the following day) and memory storage (after a 5-days interval). The control group A. polyacanthus showed learning of the task and memory retention after five days, but increasing water temperature impaired learning and memory. A thorough understanding of the effects of heat stress, cognition, and fitness is urgently required because cognition may be a key factor determining animals’ performance in the predicted scenario of climate changes. Knowing how different species respond to warming can lead to better predictions of future community dynamics, and because it is species specific, it could pinpoint vulnerable/resilience species

    Simultaneous Red - Blue Lidar and Airborne Impactor Measurements

    Get PDF
    Simultaneous two-color (0.6943 micrometers and 0.3472 micrometers) LIDAR measurements were made in the troposphere and lower stratosphere over Boulder, Colorado during March 1973. In addition, on the evening of March 26, airborne single-stage impactor measurements were made at four altitudes-- 10,500, 25,000, 33,000 and 43,000 feet MSL. These data were integrated at constant altitude for 15,45, 45, and 60 minutes respectively. The LIDAR data were taken with Langley's 48" LIDAR using a dichroic beamsplitter to separate the return at 0.6943 micrometers and 0.3472 micrometers. The analog waveforms for both colors were digitized simultaneously; one on an NCAR data acquisition system and the other on the 48" Langley data acquisition system. A discussion of the preliminary results from these measurements will be presented

    Staying true with the help of others: doxastic self-control through interpersonal commitment

    Get PDF
    I explore the possibility and rationality of interpersonal mechanisms of doxastic self-control, that is, ways in which individuals can make use of other people in order to get themselves to stick to their beliefs. I look, in particular, at two ways in which people can make interpersonal epistemic commitments, and thereby willingly undertake accountability to others, in order to get themselves to maintain their beliefs in the face of anticipated “epistemic temptations”. The first way is through the avowal of belief, and the second is through the establishment of collective belief. I argue that both of these forms of interpersonal epistemic commitment can function as effective tools for doxastic self-control, and, moreover, that the control they facilitate should not be dismissed as irrational from an epistemic perspective

    An improved criterion for new particle formation in diverse atmospheric environments

    Get PDF
    A dimensionless theory for new particle formation (NPF) was developed, using an aerosol population balance model incorporating recent developments in nucleation rates and measured particle growth rates. Based on this theoretical analysis, it was shown that a dimensionless parameter <i>L</i><sub>Γ</sub>, characterizing the ratio of the particle scavenging loss rate to the particle growth rate, exclusively determined whether or not NPF would occur on a particular day. This parameter determines the probability that a nucleated particle will grow to a detectable size before being lost by coagulation with the pre-existing aerosol. Cluster-cluster coagulation was shown to contribute negligibly to this survival probability under conditions pertinent to the atmosphere. Data acquired during intensive measurement campaigns in Tecamac (MILAGRO), Atlanta (ANARChE), Boulder, and Hyytiälä (QUEST II, QUEST IV, and EUCAARI) were used to test the validity of <i>L</i><sub>Γ</sub> as an NPF criterion. Measurements included aerosol size distributions down to 3 nm and gas-phase sulfuric acid concentrations. The model was applied to seventy-seven NPF events and nineteen non-events (characterized by growth of pre-existing aerosol without NPF) measured in diverse environments with broad ranges in sulfuric acid concentrations, ultrafine number concentrations, aerosol surface areas, and particle growth rates (nearly two orders of magnitude). Across this diverse data set, a nominal value of <i>L</i><sub>Γ</sub>=0.7 was found to determine the boundary for the occurrence of NPF, with NPF occurring when <i>L</i><sub>Γ</sub><0.7 and being suppressed when <i>L</i><sub>Γ</sub>>0.7. Moreover, nearly 45% of measured <i>L</i><sub>Γ</sub> values associated with NPF fell in the relatively narrow range of 0.1<<i>L</i><sub>Γ</sub><0.3

    Microlens OGLE-2005-BLG-169 Implies Cool Neptune-Like Planets are Common

    Full text link
    We detect a Neptune mass-ratio (q~8e-5) planetary companion to the lens star in the extremely high-magnification (A~800) microlensing event OGLE-2005-BLG-169. If the parent is a main-sequence star, it has mass M~0.5 M_sun implying a planet mass of ~13 M_earth and projected separation of ~2.7 AU. When intensely monitored over their peak, high-magnification events similar to OGLE-2005-BLG-169 have nearly complete sensitivity to Neptune mass-ratio planets with projected separations of 0.6 to 1.6 Einstein radii, corresponding to 1.6--4.3 AU in the present case. Only two other such events were monitored well enough to detect Neptunes, and so this detection by itself suggests that Neptune mass-ratio planets are common. Moreover, another Neptune was recently discovered at a similar distance from its parent star in a low-magnification event, which are more common but are individually much less sensitive to planets. Combining the two detections yields 90% upper and lower frequency limits f=0.37^{+0.30}_{-0.21} over just 0.4 decades of planet-star separation. In particular, f>16% at 90% confidence. The parent star hosts no Jupiter-mass companions with projected separations within a factor 5 of that of the detected planet. The lens-source relative proper motion is \mu~7--10 mas/yr, implying that if the lens is sufficiently bright, I<23.8, it will be detectable by HST by 3 years after peak. This would permit a more precise estimate of the lens mass and distance, and so the mass and projected separation of the planet. Analogs of OGLE-2005-BLG-169Lb orbiting nearby stars would be difficult to detect by other methods of planet detection, including radial velocities, transits, or astrometry.Comment: Submitted to ApJ Letters, 9 text pages + 4 figures + 1 tabl

    A dynamical approach to the spatiotemporal aspects of the Portevin-Le Chatelier effect: Chaos,turbulence and band propagation

    Full text link
    Experimental time series obtained from single and poly-crystals subjected to a constant strain rate tests report an intriguing dynamical crossover from a low dimensional chaotic state at medium strain rates to an infinite dimensional power law state of stress drops at high strain rates. We present results of an extensive study of all aspects of the PLC effect within the context a model that reproduces this crossover. A study of the distribution of the Lyapunov exponents as a function of strain rate shows that it changes from a small set of positive exponents in the chaotic regime to a dense set of null exponents in the scaling regime. As the latter feature is similar to the GOY shell model for turbulence, we compare our results with the GOY model. Interestingly, the null exponents in our model themselves obey a power law. The configuration of dislocations is visualized through the slow manifold analysis. This shows that while a large proportion of dislocations are in the pinned state in the chaotic regime, most of them are at the threshold of unpinning in the scaling regime. The model qualitatively reproduces the different types of deformation bands seen in experiments. At high strain rates where propagating bands are seen, the model equations are reduced to the Fisher-Kolmogorov equation for propagative fronts. This shows that the velocity of the bands varies linearly with the strain rate and inversely with the dislocation density, consistent with the known experimental results. Thus, this simple dynamical model captures the complex spatio-temporal features of the PLC effect.Comment: 17 pages, 18 figure

    Direct observation of micron-scale ordered structure in a two-dimensional electron system

    Full text link
    We have applied a novel scanned probe method to directly resolve the interior structure of a GaAs/AlGaAs two-dimensional electron system in a tunneling geometry. We find that the application of a perpendicular magnetic field can induce surprising density modulations that are not static as a function of the field. Near six and four filled Landau levels, stripe-like structures emerge with a characteristic wave length ~2 microns. Present theories do not account for ordered density modulations on this length scale.Comment: 5 pages, 4 figures. To appear in Phys. Rev.
    corecore