14 research outputs found

    Development and applications of the Gas Electron Multiplier

    Get PDF
    The Gas Electron Multiplier (GEM) has been recently developed to cope with the severe requirements of high luminosity particle physics experimentation. With excellent position accuracy and very high rate capability, GEM devices are robust and easy to manufacture. The possibility of cascading two or more multipliers permits to achieve larger gains and more stable operation. We discuss major performances of the new detectors, particularly in view of possible use for high rate portal imaging and medical diagnostics

    Optimisation of the Gas Electron Multiplier for high rate application

    Get PDF
    The construction and performance of large size GEM~detectors for the COMPASS~experiment is described. Based on the experience gained during the operation of these detectors in high rate muon, proton, and pion beams we discuss the suitability of their use in harsh radiation environments

    Discharge studies and prevention in the gas electron multiplier (GEM)

    Get PDF
    The gas electron multiplier (GEM) used as single proportional counter or in a cascade of two or more elements, permits to attain high gains and to perform detection and localization of ionizing tracks at very high radiation rates. As in other micro-pattern detectors, however, the occasional occurrence of heavily ionizing trails may trigger a local breakdown, with possible harmful consequences on the device itself and on the readout electronics. This paper describes a systematic investigation of the discharge mechanisms in single and multiple GEM structures, and suggests various strategies to reduce both the energy and the probability of the discharges

    Performance of GEM detectors in high intensity particle beams

    Get PDF
    We describe extensive tests of Double GEM and Triple GEM detectors, including full size prototypes for the COMPASS experiment, exposed to high intensity muon, proton and pion beams at the Paul~Scherrer Institute and at CERN. The measurements aim at detecting problems possible under these operation conditions, the main concern being the occurrence of discharges induced by beam particles. Results on the dependence of the probability for induced discharges on the experimental environment are presented and discussed. Implications for the application of GEM~detectors in experiments at high luminosity colliders are illustrated
    corecore