10,900 research outputs found

    Probing nuclear symmetry energy with the sub-threshold pion production

    Full text link
    Within the framework of semiclassical Boltzmann-Uehling-Uhlenbeck (BUU) transport model, we investigated the effects of symmetry energy on the sub-threshold pion using the isospin MDI interaction with the stiff and soft symmetry energies in the central collision of 48^{48}Ca + 48^{48}Ca at the incident beam energies of 100, 150, 200, 250 and 300 MeV/nucleon, respectively. We find that the ratio of π/π+\pi^{-}/\pi^{+} of sub-threshold charged pion production is greatly sensitive to the symmetry energy, particularly around 100 MeV/nucleon energies. Large sensitivity of sub-threshold charged pion production to nuclear symmetry energy may reduce uncertainties of probing nuclear symmetry energy via heavy-ion collision.Comment: 5 pages, 5 figures, typo corrections, submitted to Chinese Physics Letter

    The quantum Bell-Ziv-Zakai bounds and Heisenberg limits for waveform estimation

    Get PDF
    We propose quantum versions of the Bell-Ziv-Zakai lower bounds on the error in multiparameter estimation. As an application we consider measurement of a time-varying optical phase signal with stationary Gaussian prior statistics and a power law spectrum 1/ωp\sim 1/|\omega|^p, with p>1p>1. With no other assumptions, we show that the mean-square error has a lower bound scaling as 1/N2(p1)/(p+1)1/{\cal N}^{2(p-1)/(p+1)}, where N{\cal N} is the time-averaged mean photon flux. Moreover, we show that this accuracy is achievable by sampling and interpolation, for any p>1p>1. This bound is thus a rigorous generalization of the Heisenberg limit, for measurement of a single unknown optical phase, to a stochastically varying optical phase.Comment: 18 pages, 6 figures, comments welcom

    Osteoblast interactions within a biomimetic apatite microenvironment.

    Get PDF
    Numerous reports have shown that accelerated apatites can mediate osteoblastic differentiation in vitro and bone formation in vivo. However, how cells interact within the apatite microenvironment remains largely unclear, despite the vast literature available today. In response, this study evaluates the in vitro interactions of a well-characterized osteoblast cell line (MC3T3-E1) with the apatite microenvironment. Specifically, cell attachment, spreading, and viability were evaluated in the presence and absence of serum proteins. Proteins were found to be critical in the mediation of cell-apatite interactions, as adherence of MC3T3-E1 cells to apatite surfaces without protein coatings resulted in significant levels of cell death within 24 h in serum-free media. In the absence of protein-apatite interaction, cell viability could be "rescued" upon treatment of MC3T3-E1 cells with inhibitors to phosphate (PO(4) (3-)) transport, suggesting that PO(4) (3-) uptake may play a role in viability. In contrast, rescue was not observed upon treatment with calcium (Ca(2+)) channel inhibitors. Interestingly, a rapid "pull-down" of extracellular Ca(2+) and PO(4) (3-) ions onto the apatite surface could be measured upon the incubation of apatites with α-MEM, suggesting that cells may be subject to changing levels of Ca(2+) and PO(4) (3-) within their microenvironment. Therefore, the biomimetic apatite surface may significantly alter the microenvironment of adherent osteoblasts and, as such, be capable of affecting both cell survival and differentiation

    Temperature determination from the lattice gas model

    Get PDF
    Determination of temperature from experimental data has become important in searches for critical phenomena in heavy ion collisions. Widely used methods are ratios of isotopes (which rely on chemical and thermal equilibrium), population ratios of excited states etc. Using the lattice gas model we propose a new observable: nch/Zn_{ch}/Z where nchn_{ch} is the charge multiplicity and ZZ is the charge of the fragmenting system. We show that the reduced multiplicity is a good measure of the average temperature of the fragmenting system.Comment: 11 pages, 2 ps file

    An exploratory study of heavy domain wall fermions on the lattice

    Full text link
    We report on an exploratory study of domain wall fermions (DWF) as a lattice regularisation for heavy quarks. Within the framework of quenched QCD with the tree-level improved Symanzik gauge action we identify the DWF parameters which minimise discretisation effects. We find the corresponding effective 4dd overlap operator to be exponentially local, independent of the quark mass. We determine a maximum bare heavy quark mass of amh0.4am_h\approx 0.4, below which the approximate chiral symmetry and O(a)-improvement of DWF are sustained. This threshold appears to be largely independent of the lattice spacing. Based on these findings, we carried out a detailed scaling study for the heavy-strange meson dispersion relation and decay constant on four ensembles with lattice spacings in the range 2.05.7GeV2.0-5.7\,\mathrm{GeV}. We observe very mild a2a^2 scaling towards the continuum limit. Our findings establish a sound basis for heavy DWF in dynamical simulations of lattice QCD with relevance to Standard Model phenomenology.Comment: 23 pages, 8 figure

    Effective Dielectric Tensor for Electromagnetic Wave Propagation in Random Media

    Full text link
    We derive exact strong-contrast expansions for the effective dielectric tensor \epeff of electromagnetic waves propagating in a two-phase composite random medium with isotropic components explicitly in terms of certain integrals over the nn-point correlation functions of the medium. Our focus is the long-wavelength regime, i.e., when the wavelength is much larger than the scale of inhomogeneities in the medium. Lower-order truncations of these expansions lead to approximations for the effective dielectric constant that depend upon whether the medium is below or above the percolation threshold. In particular, we apply two- and three-point approximations for \epeff to a variety of different three-dimensional model microstructures, including dispersions of hard spheres, hard oriented spheroids and fully penetrable spheres as well as Debye random media, the random checkerboard, and power-law-correlated materials. We demonstrate the importance of employing nn-point correlation functions of order higher than two for high dielectric-phase-contrast ratio. We show that disorder in the microstructure results in an imaginary component of the effective dielectric tensor that is directly related to the {\it coarseness} of the composite, i.e., local volume-fraction fluctuations for infinitely large windows. The source of this imaginary component is the attenuation of the coherent homogenized wave due to scattering. We also remark on whether there is such attenuation in the case of a two-phase medium with a quasiperiodic structure.Comment: 40 pages, 13 figure

    Quantum theory of optical temporal phase and instantaneous frequency. II. Continuous time limit and state-variable approach to phase-locked loop design

    Full text link
    We consider the continuous-time version of our recently proposed quantum theory of optical temporal phase and instantaneous frequency [Tsang, Shapiro, and Lloyd, Phys. Rev. A 78, 053820 (2008)]. Using a state-variable approach to estimation, we design homodyne phase-locked loops that can measure the temporal phase with quantum-limited accuracy. We show that post-processing can further improve the estimation performance, if delay is allowed in the estimation. We also investigate the fundamental uncertainties in the simultaneous estimation of harmonic-oscillator position and momentum via continuous optical phase measurements from the classical estimation theory perspective. In the case of delayed estimation, we find that the inferred uncertainty product can drop below that allowed by the Heisenberg uncertainty relation. Although this result seems counter-intuitive, we argue that it does not violate any basic principle of quantum mechanics.Comment: 11 pages, 6 figures, v2: accepted by PR
    corecore