9 research outputs found
Effect of navigation problems, assessment location, and a practice test on driving assessment performance for people with alzheimer's disease
Background: People with Alzheimer's disease may be required to undertake clinical and on-road assessments to determine fitness to drive. The manner in which on-road assessments are conducted with drivers who do and do not have navigational problems may affect the outcome. Objectives: Investigate the effect of 1) navigational difficulties, 2) location of assessment (un/familiar area) and assessment order, and 3) undertaking a second assessment (practice), on passing an on-road driving assessment. Methods: Forty-three drivers undertook an Occupational Therapy-Driver Assessment Off Road Assessment (OT-DORA) Battery which included the Drive Home Maze Test (DHMT). Participants with/without a history of navigational problems were randomly allocated into three groups: 1) Unfamiliar/then familiar area assessment; 2) Unfamiliar/unfamiliar; 3) familiar/unfamiliar. An on-road assessment protocol was used including over 100 expected behaviors at nominated points along the directed route. For familiar area assessments, the driver self-navigated from their home to shops and services. A pass/fail decision was made for each assessment. Results: A generalized linear mixed effects model showed neither location, nor practice affected passing the on-road assessment. Participants with navigational problems were six times less likely to pass regardless of route familiarity and direction method, and the DHMT was a significant negative predictor of passing. Conclusion: Drivers with Alzheimer's disease who have navigational problems and are slow to complete the DHMT are unlikely to pass an on-road assessment. However, navigation and maze completion skills may be a proxy for an underlying cognitive skill underpinning driving performance. © 2019 - IOS Press and the authors. All rights reserved
Low- Versus Standard-Dose Alteplase in Patients on Prior Antiplatelet Therapy: The ENCHANTED Trial (Enhanced Control of Hypertension and Thrombolysis Stroke Study)
BACKGROUND AND PURPOSE: Many patients receiving thrombolysis for acute ischemic stroke are on prior antiplatelet therapy (APT), which may increase symptomatic intracerebral hemorrhage risk. In a prespecified subgroup analysis, we report comparative effects of different doses of intravenous alteplase according to prior APT use among participants of the international multicenter ENCHANTED study (Enhanced Control of Hypertension and Thrombolysis Stroke Study). METHODS: Among 3285 alteplase-treated patients (mean age, 66.6 years; 38% women) randomly assigned to low-dose (0.6 mg/kg) or standard-dose (0.9 mg/kg) intravenous alteplase within 4.5 hours of symptom onset, 752 (22.9%) reported prior APT use. Primary outcome at 90 days was the combined end point of death or disability (modified Rankin Scale [mRS] scores, 2-6). Other outcomes included mRS scores 3 to 6, ordinal mRS shift, and symptomatic intracerebral hemorrhage by various standard criteria. RESULTS: There were no significant differences in outcome between patients with and without prior APT after adjustment for baseline characteristics and management factors during the first week; defined by mRS scores 2 to 6 (adjusted odds ratio [OR], 1.01; 95% confidence interval [CI], 0.81-1.26; P=0.953), 3 to 6 (OR, 0.95; 95% CI, 0.75-1.20; P=0.662), or ordinal mRS shift (OR, 1.03; 95% CI, 0.87-1.21; P=0.770). Alteplase-treated patients on prior APT had higher symptomatic intracerebral hemorrhage (OR, 1.82; 95% CI, 1.00-3.30; P=0.051) according to the safe implementation of thrombolysis in stroke-monitoring study definition. Although not significant (P-trend, 0.053), low-dose alteplase tended to have better outcomes than standard-dose alteplase in those on prior APT compared with those not using APT (mRS scores of 2-6; OR, 0.84; 95% CI, 0.62-1.12 versus OR, 1.16; 95% CI, 0.99-1.36). CONCLUSIONS: Low-dose alteplase may improve outcomes in thrombolysis-treated acute ischemic stroke patients on prior APT, but this requires further evaluation in a randomized controlled trial. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01422616
The Kidney Failure Risk Equation: Evaluation of Novel Input Variables including eGFR Estimated Using the CKD-EPI 2021 Equation in 59 Cohorts
Significance statement: The kidney failure risk equation (KFRE) uses age, sex, GFR, and urine albumin-to-creatinine ratio (ACR) to predict 2- and 5-year risk of kidney failure in populations with eGFR
Background: The kidney failure risk equation (KFRE) uses age, sex, GFR, and urine albumin-to-creatinine ratio (ACR) to predict kidney failure risk in people with GFR
Methods: Using 59 cohorts with 312,424 patients with CKD, we tested several modifications to the KFRE for their potential to improve the KFRE: using the CKD-EPI 2021 creatinine equation for eGFR, substituting 1-year average ACR for single-measure ACR and 1-year average eGFR in participants with high eGFR variability, and adding 2-year prior eGFR slope and cardiovascular comorbidities. We also assessed calibration of the KFRE in subgroups of eGFR and age before and after accounting for the competing risk of death.
Results: The KFRE remained accurate and well calibrated overall using the CKD-EPI 2021 eGFR equation. The other modifications did not improve KFRE performance. In subgroups of eGFR 45-59 ml/min per 1.73 m 2 and in older adults using the 5-year time horizon, the KFRE demonstrated systematic underprediction and overprediction, respectively. We developed and tested a new model with a spline term in eGFR and incorporating the competing risk of mortality, resulting in more accurate calibration in those specific subgroups but not overall.
Conclusions: The original KFRE is generally accurate for eGFR <45 ml/min per 1.73 m 2 when using the CKD-EPI 2021 equation. Incorporating competing risk methodology and splines for eGFR may improve calibration in low-risk settings with longer time horizons. Including historical averages, eGFR slopes, or a competing risk design did not meaningfully alter KFRE performance in most circumstances.</p
Intensive blood pressure reduction with intravenous thrombolysis therapy for acute ischaemic stroke (ENCHANTED): an international, randomised, open-label, blinded-endpoint, phase 3 trial
BACKGROUND: Systolic blood pressure of more than 185 mm Hg is a contraindication to thrombolytic treatment with intravenous alteplase in patients with acute ischaemic stroke, but the target systolic blood pressure for optimal outcome is uncertain. We assessed intensive blood pressure lowering compared with guideline-recommended blood pressure lowering in patients treated with alteplase for acute ischaemic stroke. METHODS: We did an international, partial-factorial, open-label, blinded-endpoint trial of thrombolysis-eligible patients (age ≥18 years) with acute ischaemic stroke and systolic blood pressure 150 mm Hg or more, who were screened at 110 sites in 15 countries. Eligible patients were randomly assigned (1:1, by means of a central, web-based program) within 6 h of stroke onset to receive intensive (target systolic blood pressure 130-140 mm Hg within 1 h) or guideline (target systolic blood pressure <180 mm Hg) blood pressure lowering treatment over 72 h. The primary outcome was functional status at 90 days measured by shift in modified Rankin scale scores, analysed with unadjusted ordinal logistic regression. The key safety outcome was any intracranial haemorrhage. Primary and safety outcome assessments were done in a blinded manner. Analyses were done on intention-to-treat basis. This trial is registered with ClinicalTrials.gov, number NCT01422616. FINDINGS: Between March 3, 2012, and April 30, 2018, 2227 patients were randomly allocated to treatment groups. After exclusion of 31 patients because of missing consent or mistaken or duplicate randomisation, 2196 alteplase-eligible patients with acute ischaemic stroke were included: 1081 in the intensive group and 1115 in the guideline group, with 1466 (67·4%) administered a standard dose among the 2175 actually given intravenous alteplase. Median time from stroke onset to randomisation was 3·3 h (IQR 2·6-4·1). Mean systolic blood pressure over 24 h was 144·3 mm Hg (SD 10·2) in the intensive group and 149·8 mm Hg (12·0) in the guideline group (p<0·0001). Primary outcome data were available for 1072 patients in the intensive group and 1108 in the guideline group. Functional status (mRS score distribution) at 90 days did not differ between groups (unadjusted odds ratio [OR] 1·01, 95% CI 0·87-1·17, p=0·8702). Fewer patients in the intensive group (160 [14·8%] of 1081) than in the guideline group (209 [18·7%] of 1115) had any intracranial haemorrhage (OR 0·75, 0·60-0·94, p=0·0137). The number of patients with any serious adverse event did not differ significantly between the intensive group (210 [19·4%] of 1081) and the guideline group (245 [22·0%] of 1115; OR 0·86, 0·70-1·05, p=0·1412). There was no evidence of an interaction of intensive blood pressure lowering with dose (low vs standard) of alteplase with regard to the primary outcome. INTERPRETATION: Although intensive blood pressure lowering is safe, the observed reduction in intracranial haemorrhage did not lead to improved clinical outcome compared with guideline treatment. These results might not support a major shift towards this treatment being applied in those receiving alteplase for mild-to-moderate acute ischaemic stroke. Further research is required to define the underlying mechanisms of benefit and harm resulting from early intensive blood pressure lowering in this patient group
How to specify healthcare process improvements collaboratively using rapid, remote consensus-building: a framework and a case study of its application
Background: Practical methods for facilitating process improvement are needed to support high quality, safe care. How best to specify (identify and define) process improvements – the changes that need to be made in a healthcare process – remains a key question. Methods for doing so collaboratively, rapidly and remotely offer much potential, but are under-developed. We propose an approach for engaging diverse stakeholders remotely in a consensus-building exercise to help specify improvements in a healthcare process, and we illustrate the approach in a case study. Methods: Organised in a five-step framework, our proposed approach is informed by a participatory ethos, crowdsourcing and consensus-building methods: (1) define scope and objective of the process improvement; (2) produce a draft or prototype of the proposed process improvement specification; (3) identify participant recruitment strategy; (4) design and conduct a remote consensus-building exercise; (5) produce a final specification of the process improvement in light of learning from the exercise. We tested the approach in a case study that sought to specify process improvements for the management of obstetric emergencies during the COVID-19 pandemic. We used a brief video showing a process for managing a post-partum haemorrhage in women with COVID-19 to elicit recommendations on how the process could be improved. Two Delphi rounds were then conducted to reach consensus. Results: We gathered views from 105 participants, with a background in maternity care (n = 36), infection prevention and control (n = 17), or human factors (n = 52). The participants initially generated 818 recommendations for how to improve the process illustrated in the video, which we synthesised into a set of 22 recommendations. The consensus-building exercise yielded a final set of 16 recommendations. These were used to inform the specification of process improvements for managing the obstetric emergency and develop supporting resources, including an updated video. Conclusions: The proposed methodological approach enabled the expertise and ingenuity of diverse stakeholders to be captured and mobilised to specify process improvements in an area of pressing service need. This approach has the potential to address current challenges in process improvement, but will require further evaluation
Incorporating kidney disease measures into cardiovascular risk prediction: Development and validation in 9 million adults from 72 datasets
Background: Chronic kidney disease (CKD) measures (estimated glomerular filtration rate [eGFR] and albuminuria) are frequently assessed in clinical practice and improve the prediction of incident cardiovascular disease (CVD), yet most major clinical guidelines do not have a standardized approach for incorporating these measures into CVD risk prediction. “CKD Patch” is a validated method to calibrate and improve the predicted risk from established equations according to CKD measures. Methods: Utilizing data from 4,143,535 adults from 35 datasets, we developed several “CKD Patches” incorporating eGFR and albuminuria, to enhance prediction of risk of atherosclerotic CVD (ASCVD) by the Pooled Cohort Equation (PCE) and CVD mortality by Systematic COronary Risk Evaluation (SCORE). The risk enhancement by CKD Patch was determined by the deviation between individual CKD measures and the values expected from their traditional CVD risk factors and the hazard ratios for eGFR and albuminuria. We then validated this approach among 4,932,824 adults from 37 independent datasets, comparing the original PCE and SCORE equations (recalibrated in each dataset) to those with addition of CKD Patch. Findings: We confirmed the prediction improvement with the CKD Patch for CVD mortality beyond SCORE and ASCVD beyond PCE in validation datasets (Δc-statistic 0.027 [95% CI 0.018–0.036] and 0.010 [0.007–0.013] and categorical net reclassification improvement 0.080 [0.032–0.127] and 0.056 [0.044–0.067], respectively). The median (IQI) of the ratio of predicted risk for CVD mortality with CKD Patch vs. the original prediction with SCORE was 2.64 (1.89–3.40) in very high-risk CKD (e.g., eGFR 30–44 ml/min/1.73m2 with albuminuria ≥30 mg/g), 1.86 (1.48–2.44) in high-risk CKD (e.g., eGFR 45–59 ml/min/1.73m2 with albuminuria 30–299 mg/g), and 1.37 (1.14–1.69) in moderate risk CKD (e.g., eGFR 60–89 ml/min/1.73m2 with albuminuria 30–299 mg/g), indicating considerable risk underestimation in CKD with SCORE. The corresponding estimates for ASCVD with PCE were 1.55 (1.37–1.81), 1.24 (1.10–1.54), and 1.21 (0.98–1.46). Interpretation: The “CKD Patch” can be used to quantitatively enhance ASCVD and CVD mortality risk prediction equations recommended in major US and European guidelines according to CKD measures, when available. Funding: US National Kidney Foundation and the NIDDK
Equalization of four cardiovascular risk algorithms after systematic recalibration: individual-participant meta-analysis of 86 prospective studies.
Aims: There is debate about the optimum algorithm for cardiovascular disease (CVD) risk estimation. We conducted head-to-head comparisons of four algorithms recommended by primary prevention guidelines, before and after 'recalibration', a method that adapts risk algorithms to take account of differences in the risk characteristics of the populations being studied. Methods and results: Using individual-participant data on 360 737 participants without CVD at baseline in 86 prospective studies from 22 countries, we compared the Framingham risk score (FRS), Systematic COronary Risk Evaluation (SCORE), pooled cohort equations (PCE), and Reynolds risk score (RRS). We calculated measures of risk discrimination and calibration, and modelled clinical implications of initiating statin therapy in people judged to be at 'high' 10 year CVD risk. Original risk algorithms were recalibrated using the risk factor profile and CVD incidence of target populations. The four algorithms had similar risk discrimination. Before recalibration, FRS, SCORE, and PCE over-predicted CVD risk on average by 10%, 52%, and 41%, respectively, whereas RRS under-predicted by 10%. Original versions of algorithms classified 29-39% of individuals aged ≥40 years as high risk. By contrast, recalibration reduced this proportion to 22-24% for every algorithm. We estimated that to prevent one CVD event, it would be necessary to initiate statin therapy in 44-51 such individuals using original algorithms, in contrast to 37-39 individuals with recalibrated algorithms. Conclusion: Before recalibration, the clinical performance of four widely used CVD risk algorithms varied substantially. By contrast, simple recalibration nearly equalized their performance and improved modelled targeting of preventive action to clinical need
Risk thresholds for alcohol consumption: combined analysis of individual-participant data for 599 912 current drinkers in 83 prospective studies.
BACKGROUND: Low-risk limits recommended for alcohol consumption vary substantially across different national guidelines. To define thresholds associated with lowest risk for all-cause mortality and cardiovascular disease, we studied individual-participant data from 599 912 current drinkers without previous cardiovascular disease. METHODS: We did a combined analysis of individual-participant data from three large-scale data sources in 19 high-income countries (the Emerging Risk Factors Collaboration, EPIC-CVD, and the UK Biobank). We characterised dose-response associations and calculated hazard ratios (HRs) per 100 g per week of alcohol (12·5 units per week) across 83 prospective studies, adjusting at least for study or centre, age, sex, smoking, and diabetes. To be eligible for the analysis, participants had to have information recorded about their alcohol consumption amount and status (ie, non-drinker vs current drinker), plus age, sex, history of diabetes and smoking status, at least 1 year of follow-up after baseline, and no baseline history of cardiovascular disease. The main analyses focused on current drinkers, whose baseline alcohol consumption was categorised into eight predefined groups according to the amount in grams consumed per week. We assessed alcohol consumption in relation to all-cause mortality, total cardiovascular disease, and several cardiovascular disease subtypes. We corrected HRs for estimated long-term variability in alcohol consumption using 152 640 serial alcohol assessments obtained some years apart (median interval 5·6 years [5th-95th percentile 1·04-13·5]) from 71 011 participants from 37 studies. FINDINGS: In the 599 912 current drinkers included in the analysis, we recorded 40 310 deaths and 39 018 incident cardiovascular disease events during 5·4 million person-years of follow-up. For all-cause mortality, we recorded a positive and curvilinear association with the level of alcohol consumption, with the minimum mortality risk around or below 100 g per week. Alcohol consumption was roughly linearly associated with a higher risk of stroke (HR per 100 g per week higher consumption 1·14, 95% CI, 1·10-1·17), coronary disease excluding myocardial infarction (1·06, 1·00-1·11), heart failure (1·09, 1·03-1·15), fatal hypertensive disease (1·24, 1·15-1·33); and fatal aortic aneurysm (1·15, 1·03-1·28). By contrast, increased alcohol consumption was log-linearly associated with a lower risk of myocardial infarction (HR 0·94, 0·91-0·97). In comparison to those who reported drinking >0-≤100 g per week, those who reported drinking >100-≤200 g per week, >200-≤350 g per week, or >350 g per week had lower life expectancy at age 40 years of approximately 6 months, 1-2 years, or 4-5 years, respectively. INTERPRETATION: In current drinkers of alcohol in high-income countries, the threshold for lowest risk of all-cause mortality was about 100 g/week. For cardiovascular disease subtypes other than myocardial infarction, there were no clear risk thresholds below which lower alcohol consumption stopped being associated with lower disease risk. These data support limits for alcohol consumption that are lower than those recommended in most current guidelines. FUNDING: UK Medical Research Council, British Heart Foundation, National Institute for Health Research, European Union Framework 7, and European Research Council
Risk thresholds for alcohol consumption: combined analysis of individual-participant data for 599 912 current drinkers in 83 prospective studies.
BACKGROUND: Low-risk limits recommended for alcohol consumption vary substantially across different national guidelines. To define thresholds associated with lowest risk for all-cause mortality and cardiovascular disease, we studied individual-participant data from 599 912 current drinkers without previous cardiovascular disease. METHODS: We did a combined analysis of individual-participant data from three large-scale data sources in 19 high-income countries (the Emerging Risk Factors Collaboration, EPIC-CVD, and the UK Biobank). We characterised dose-response associations and calculated hazard ratios (HRs) per 100 g per week of alcohol (12·5 units per week) across 83 prospective studies, adjusting at least for study or centre, age, sex, smoking, and diabetes. To be eligible for the analysis, participants had to have information recorded about their alcohol consumption amount and status (ie, non-drinker vs current drinker), plus age, sex, history of diabetes and smoking status, at least 1 year of follow-up after baseline, and no baseline history of cardiovascular disease. The main analyses focused on current drinkers, whose baseline alcohol consumption was categorised into eight predefined groups according to the amount in grams consumed per week. We assessed alcohol consumption in relation to all-cause mortality, total cardiovascular disease, and several cardiovascular disease subtypes. We corrected HRs for estimated long-term variability in alcohol consumption using 152 640 serial alcohol assessments obtained some years apart (median interval 5·6 years [5th-95th percentile 1·04-13·5]) from 71 011 participants from 37 studies. FINDINGS: In the 599 912 current drinkers included in the analysis, we recorded 40 310 deaths and 39 018 incident cardiovascular disease events during 5·4 million person-years of follow-up. For all-cause mortality, we recorded a positive and curvilinear association with the level of alcohol consumption, with the minimum mortality risk around or below 100 g per week. Alcohol consumption was roughly linearly associated with a higher risk of stroke (HR per 100 g per week higher consumption 1·14, 95% CI, 1·10-1·17), coronary disease excluding myocardial infarction (1·06, 1·00-1·11), heart failure (1·09, 1·03-1·15), fatal hypertensive disease (1·24, 1·15-1·33); and fatal aortic aneurysm (1·15, 1·03-1·28). By contrast, increased alcohol consumption was log-linearly associated with a lower risk of myocardial infarction (HR 0·94, 0·91-0·97). In comparison to those who reported drinking >0-≤100 g per week, those who reported drinking >100-≤200 g per week, >200-≤350 g per week, or >350 g per week had lower life expectancy at age 40 years of approximately 6 months, 1-2 years, or 4-5 years, respectively. INTERPRETATION: In current drinkers of alcohol in high-income countries, the threshold for lowest risk of all-cause mortality was about 100 g/week. For cardiovascular disease subtypes other than myocardial infarction, there were no clear risk thresholds below which lower alcohol consumption stopped being associated with lower disease risk. These data support limits for alcohol consumption that are lower than those recommended in most current guidelines. FUNDING: UK Medical Research Council, British Heart Foundation, National Institute for Health Research, European Union Framework 7, and European Research Council