52 research outputs found

    Activation of Latent HIV Using Drug-Loaded Nanoparticles

    Get PDF
    Antiretroviral therapy is currently only capable of controlling HIV replication rather than completely eradicating virus from patients. This is due in part to the establishment of a latent virus reservoir in resting CD4+ T cells, which persists even in the presence of HAART. It is thought that forced activation of latently infected cells could induce virus production, allowing targeting of the cell by the immune response. A variety of molecules are able to stimulate HIV from latency. However no tested purging strategy has proven capable of eliminating the infection completely or preventing viral rebound if therapy is stopped. Hence novel latency activation approaches are required. Nanoparticles can offer several advantages over more traditional drug delivery methods, including improved drug solubility, stability, and the ability to simultaneously target multiple different molecules to particular cell or tissue types. Here we describe the development of a novel lipid nanoparticle with the protein kinase C activator bryostatin-2 incorporated (LNP-Bry). These particles can target and activate primary human CD4+ T-cells and stimulate latent virus production from human T-cell lines in vitro and from latently infected cells in a humanized mouse model ex vivo. This activation was synergistically enhanced by the HDAC inhibitor sodium butyrate. Furthermore, LNP-Bry can also be loaded with the protease inhibitor nelfinavir (LNP-Bry-Nel), producing a particle capable of both activating latent virus and inhibiting viral spread. Taken together these data demonstrate the ability of nanotechnological approaches to provide improved methods for activating latent HIV and provide key proof-of-principle experiments showing how novel delivery systems may enhance future HIV therapy

    A phase II trial of bryostatin-1 administered by weekly 24-hour infusion in recurrent epithelial ovarian carcinoma

    Get PDF
    Bryostatin-1 is a macrocyclic lactone whose main mechanism of action is protein kinase C modulation. We investigated its activity as a weekly 24-h infusion in recurrent ovarian carcinoma. In all, 17 patients were recruited and 11 had chemotherapy-resistant disease as defined by disease progression within 4 months of last cytotoxic therapy. All were evaluable for toxicity and 14 for response. There were no disease responses and the main toxicity was myalgia

    Incidence and Risk of QTc Interval Prolongation among Cancer Patients Treated with Vandetanib: A Systematic Review and Meta-analysis

    Get PDF
    Vandetanib is a multikinase inhibitor that is under assessment for the treatment of various cancers. QTc interval prolongation is one of the major adverse effects of this drug, but the reported incidence varies substantially among clinical trials. We performed a systematic review and meta-analysis to obtain a better understanding in the risk of QTc interval prolongation among cancer patients administered vandetanib.Eligible studies were phase II and III prospective clinical trials that involved cancer patients who were prescribed vandetanib 300 mg/d and that included data on QTc interval prolongation. The overall incidence and risk of QTc interval prolongation were calculated using random-effects or fixed-effects models, depending on the heterogeneity of the included studies. Nine trials with 2,188 patients were included for the meta-analysis. The overall incidence of all-grade and high-grade QTc interval prolongation was 16.4% (95% CI, 8.1-30.4%) and 3.7% (8.1-30.4%), respectively, among non-thyroid cancer patients, and 18.0% (10.7-28.6%) and 12.0% (4.5-28.0%), respectively, among thyroid cancer patients. Patients with thyroid cancer who had longer treatment duration also had a higher incidence of high-grade events, with a relative risk of 3.24 (1.57-6.71), than patients who had non-thyroid cancer. Vandetanib was associated with a significantly increased risk of all-grade QTc interval prolongation with overall Peto odds ratios of 7.26 (4.36-12.09) and 5.70 (3.09-10.53) among patients with non-thyroid cancer and thyroid cancer, respectively, compared to the controls.Treatment with vandetanib is associated with a significant increase in the overall incidence and risk of QTc interval prolongation. Different cancer types and treatment durations may affect the risk of developing high-grade QTc interval prolongation

    A Test of Highly Optimized Tolerance Reveals Fragile Cell-Cycle Mechanisms Are Molecular Targets in Clinical Cancer Trials

    Get PDF
    Robustness, a long-recognized property of living systems, allows function in the face of uncertainty while fragility, i.e., extreme sensitivity, can potentially lead to catastrophic failure following seemingly innocuous perturbations. Carlson and Doyle hypothesized that highly-evolved networks, e.g., those involved in cell-cycle regulation, can be resistant to some perturbations while highly sensitive to others. The “robust yet fragile” duality of networks has been termed Highly Optimized Tolerance (HOT) and has been the basis of new lines of inquiry in computational and experimental biology. In this study, we tested the working hypothesis that cell-cycle control architectures obey the HOT paradigm. Three cell-cycle models were analyzed using monte-carlo sensitivity analysis. Overall state sensitivity coefficients, which quantify the robustness or fragility of a given mechanism, were calculated using a monte-carlo strategy with three different numerical techniques along with multiple parameter perturbation strategies to control for possible numerical and sampling artifacts. Approximately 65% of the mechanisms in the G1/S restriction point were responsible for 95% of the sensitivity, conversely, the G2-DNA damage checkpoint showed a much stronger dependence on a few mechanisms; ∼32% or 13 of 40 mechanisms accounted for 95% of the sensitivity. Our analysis predicted that CDC25 and cyclin E mechanisms were strongly implicated in G1/S malfunctions, while fragility in the G2/M checkpoint was predicted to be associated with the regulation of the cyclin B-CDK1 complex. Analysis of a third model containing both G1/S and G2/M checkpoint logic, predicted in addition to mechanisms already mentioned, that translation and programmed proteolysis were also key fragile subsystems. Comparison of the predicted fragile mechanisms with literature and current preclinical and clinical trials suggested a strong correlation between efficacy and fragility. Thus, when taken together, these results support the working hypothesis that cell-cycle control architectures are HOT networks and establish the mathematical estimation and subsequent therapeutic exploitation of fragile mechanisms as a novel strategy for anti-cancer lead generation

    Safety biomarkers and the clinical development of oncology therapeutics: Considerations for cardiovascular safety and risk management

    No full text
    During the clinical development of oncology therapeutics, new safety biomarkers are being employed with broad applications and implications for risk management and regulatory approval. Clinical laboratory results, used as safety biomarkers, can influence decision making at many levels during the clinical development and regulatory review of investigational cancer therapies, including (1) initial eligibility for protocol therapy; (2) analyses used to estimate and characterize the safety profile; and (3) treatment delivery, based on specific rules to modify or discontinue protocol treatment. With the increasing applications of safety biomarkers in clinical studies, consideration must be given to possible unintended consequences, including (1) restricted access to promising treatments; (2) delays in study completion; and (3) limitations to dose delivery, escalation, and determination of the maximal tolerated dose, the recommended phase 2 dose, and the optimal biologic dose selected for registration studies. This review will compare and contrast 2 biomarkers for cardiac safety that are employed in an increasing number of clinical programs designed for investigational oncology therapeutics: (1) assessment of left ventricular ejection fraction by either echocardiography or multigated acquisition scan; and (2) electrophysiological measurement of QT/QTc duration, assessed by electrocardiogram, for predicting risk of a potentially fatal arrhythmia called torsades de pointes. While these and other new safety biomarkers have major value in the development of oncology therapeutics, their applications require careful consideration to avoid unintended consequences that could negatively affect (1) the care of patients with advanced malignancy and (2) the advancement of promising new agents

    A Comparative Structural Characterization of the Human NSCL-1 and NSCL-2 Genes

    No full text
    Human cDNA clones for NSCL-1 and NSCL-2, two basic domain helix-loop-helix (bHLH) genes expressed predominantly in the developing nervous system, were obtained from a fetal brain cDNA library. The full- length transcripts and the genomic structures were determined. The cDNAs for the two genes encode predicted proteins of similar size (133 and 135 amino acids for NSCL- 1 and NSCL-2, respectively) and structure. The carboxyl-terminal 75 amino acids of the two proteins contain the bHLH motif and differ from each other by only three conservative amino acid changes, while the amino-terminal portions are markedly divergent from each other. In addition to the similar protein structure, the genes have a similar genomic organization, suggesting a close evolutionary relationship. The5’-regulatory regions of the two genes share some features(ie. potential TATA, CCAAT, and GATA binding sites) but also differ significantly in their G+C content. NSCL-1 is relatively G+C-rich (63%)in the sequences upstream of transcription initiation and has multiple potential binding sites for transcription factors that bind to G+C-rich sequences (e.g. AP-2). NSCL-2 is relatively A+T-rich (63%) in this region and has a potential binding site for AP1. Studies of expression in normal tissues demonstrated expression of NSCL-1 and NSCL-2 in the developing central and peripheral nervous system, most likely in developing neurons. Additional Northern analysis studies in cell lines revealed expression of these genes in some cell lines derived from tumors with neural or neuroendocrine features such as neuroblastoma, PNET, and small cell lung cancer. NSCL-1 is expressed in a larger number of these cell lines. The differences in expression may parallel differences in develop-mental regulation

    A Comparative Structural Characterization of the Human NSCL-1 and NSCL-2 Genes

    No full text
    Human cDNA clones for NSCL-1 and NSCL-2, two basic domain helix-loop-helix (bHLH) genes expressed predominantly in the developing nervous system, were obtained from a fetal brain cDNA library. The full- length transcripts and the genomic structures were determined. The cDNAs for the two genes encode predicted proteins of similar size (133 and 135 amino acids for NSCL- 1 and NSCL-2, respectively) and structure. The carboxyl-terminal 75 amino acids of the two proteins contain the bHLH motif and differ from each other by only three conservative amino acid changes, while the amino-terminal portions are markedly divergent from each other. In addition to the similar protein structure, the genes have a similar genomic organization, suggesting a close evolutionary relationship. The5’-regulatory regions of the two genes share some features(ie. potential TATA, CCAAT, and GATA binding sites) but also differ significantly in their G+C content. NSCL-1 is relatively G+C-rich (63%)in the sequences upstream of transcription initiation and has multiple potential binding sites for transcription factors that bind to G+C-rich sequences (e.g. AP-2). NSCL-2 is relatively A+T-rich (63%) in this region and has a potential binding site for AP1. Studies of expression in normal tissues demonstrated expression of NSCL-1 and NSCL-2 in the developing central and peripheral nervous system, most likely in developing neurons. Additional Northern analysis studies in cell lines revealed expression of these genes in some cell lines derived from tumors with neural or neuroendocrine features such as neuroblastoma, PNET, and small cell lung cancer. NSCL-1 is expressed in a larger number of these cell lines. The differences in expression may parallel differences in develop-mental regulation
    corecore