250 research outputs found
Assessing and Promoting Functional Resilience in Flight Crews During Exploration Missions
The NASA Human Research Program works to mitigate risks to health and performance on extended missions. However, research should be directed not only to mitigating known risks, but also to providing crews with tools to assess and enhance resilience, as a group and individually. We can draw on ideas from complexity theory to assess resilience. The entire crew or the individual crewmember can be viewed as a complex system composed of subsystems; the interactions between subsystems are of crucial importance. Understanding the interactions can provide important information even in the absence of complete information on the component subsystems. Enabled by advances in noninvasive measurement of physiological and behavioral parameters, subsystem monitoring can be implemented within a mission and during training to establish baselines. Coupled with mathematical modeling, this can provide assessment of health and function. Since the web of physiological systems (and crewmembers) can be interpreted as a network in mathematical terms, we can draw on recent work that relates the structure of such networks to their resilience (ability to self-organize in the face of perturbation). Some of the many parameters and interactions to choose from include: sleep cycles, coordination of work and meal times, cardiorespiratory rhythms, circadian rhythms and body temperature, stress markers and cognition, sleep and performance, immune function and nutritional status. Tools for resilience are then the means to measure and analyze these parameters, incorporate them into models of normal variability and interconnectedness, and recognize when parameters or their couplings are outside of normal limits
Eye-position dependence of torsional velocity during interaural translation, horizontal pursuit, and yaw-axis rotation in humans
AbstractThe translational vestibulo-ocular reflex (tVOR) stabilizes an image on the fovea during linear movements of the head. It has been suggested that the tVOR may share pathways with the pursuit system. We asked whether the tVOR and pursuit would be similar in their behavior relative to Listing’s Law. We compared torsional eye velocity as a function of vertical orbital position during interaural translation, pursuit, and yaw-axis rotation. We found that the eye-position-dependence of torsion was similar during translation and pursuit, which differed from that during yaw-axis rotation. These findings further support a close relationship between the mechanisms that generate pursuit and the tVOR
Research from the NASA Twins Study and Omics in Support of Mars Missions
The NASA Twins Study, NASA's first foray into integrated omic studies in humans, illustrates how an integrated omics approach can be brought to bear on the challenges to human health and performance on a Mars mission. The NASA Twins Study involves US Astronaut Scott Kelly and his identical twin brother, Mark Kelly, a retired US Astronaut. No other opportunity to study a twin pair for a prolonged period with one subject in space and one on the ground is available for the foreseeable future. A team of 10 principal investigators are conducting the Twins Study, examining a very broad range of biological functions including the genome, epigenome, transcriptome, proteome, metabolome, gut microbiome, immunological response to vaccinations, indicators of atherosclerosis, physiological fluid shifts, and cognition. A novel aspect of the study is the integrated study of molecular, physiological, cognitive, and microbiological properties. Major sample and data collection from both subjects for this study began approximately six months before Scott Kelly's one year mission on the ISS, continue while Scott Kelly is in flight and will conclude approximately six months after his return to Earth. Mark Kelly will remain on Earth during this study, in a lifestyle unconstrained by this study, thereby providing a measure of normal variation in the properties being studied. An overview of initial results and the future plans will be described as well as the technological and ethical issues raised for spaceflight studies involving omics
Capability for Integrated Systems Risk-Reduction Analysis
NASA's Human Research Program (HRP) is working to increase the likelihoods of human health and performance success during long-duration missions, and subsequent crew long-term health. To achieve these goals, there is a need to develop an integrated understanding of how the complex human physiological-socio-technical mission system behaves in spaceflight. This understanding will allow HRP to provide cross-disciplinary spaceflight countermeasures while minimizing resources such as mass, power, and volume. This understanding will also allow development of tools to assess the state of and enhance the resilience of individual crewmembers, teams, and the integrated mission system. We will discuss a set of risk-reduction questions that has been identified to guide the systems approach necessary to meet these needs. In addition, a framework of factors influencing human health and performance in space, called the Contributing Factor Map (CFM), is being applied as the backbone for incorporating information addressing these questions from sources throughout HRP. Using the common language of the CFM, information from sources such as the Human System Risk Board summaries, Integrated Research Plan, and HRP-funded publications has been combined and visualized in ways that allow insight into cross-disciplinary interconnections in a systematic, standardized fashion. We will show examples of these visualizations. We will also discuss applications of the resulting analysis capability that can inform science portfolio decisions, such as areas in which cross-disciplinary solicitations or countermeasure development will potentially be fruitful
Identifying Cross-Disciplinary Interactions to Assess and Promote Functional Resilience in Flight Crews During Exploration Missions
NASA supports research to mitigate risks to health and performance on extended missions. Typically these risks are investigated independently. In reality, physiological systems are tightly coupled, and related to psychological and inter-individual factors (team cohesion, conflict). We draw on ideas from network theory to assess these interactions and better design a research framework to address them
Go Global: London
Almost everyone does something fun and exciting during spring break. I also wanted to do something fun, adventurous, and worthwhile. And while a cruise or week on a beach sounded enticing, I chose to travel to London, England, with my friends from the Jon M. Huntsman School of Business.https://digitalcommons.usu.edu/huntsman_news/1200/thumbnail.jp
ICNet for Real-Time Semantic Segmentation on High-Resolution Images
We focus on the challenging task of real-time semantic segmentation in this
paper. It finds many practical applications and yet is with fundamental
difficulty of reducing a large portion of computation for pixel-wise label
inference. We propose an image cascade network (ICNet) that incorporates
multi-resolution branches under proper label guidance to address this
challenge. We provide in-depth analysis of our framework and introduce the
cascade feature fusion unit to quickly achieve high-quality segmentation. Our
system yields real-time inference on a single GPU card with decent quality
results evaluated on challenging datasets like Cityscapes, CamVid and
COCO-Stuff.Comment: ECCV 201
Integrating Spaceflight Human System Risk Research
NASA is working to increase the likelihoods of human health and performance success during exploration missions, and subsequent crew long-term health. To manage the risks in achieving these goals, a system modeled after a Continuous Risk Management framework is in place. "Human System Risks" (Risks) have been identified, and approximately 30 are being actively addressed by NASA's Human Research Program (HRP). Research plans for each of HRP's Risks have been developed and are being executed. Ties between the research efforts supporting each Risk have been identified, however, this has been in an ad hoc fashion. There is growing recognition that solutions developed to address the full set of Risks covering medical, physiological, behavioral, vehicle, and organizational aspects of the exploration missions must be integrated across Risks and disciplines. We will discuss how a framework of factors influencing human health and performance in space is being applied as the backbone for bringing together sometimes disparate information relevant to the individual Risks. The resulting interrelated information is allowing us to identify and visualize connections between Risks and research efforts in a systematic and standardized way. We will discuss the applications of the visualizations and insights to research planning, solicitation, and decision-making processes
A Review of Object Detection Models based on Convolutional Neural Network
Convolutional Neural Network (CNN) has become the state-of-the-art for object
detection in image task. In this chapter, we have explained different
state-of-the-art CNN based object detection models. We have made this review
with categorization those detection models according to two different
approaches: two-stage approach and one-stage approach. Through this chapter, it
has shown advancements in object detection models from R-CNN to latest
RefineDet. It has also discussed the model description and training details of
each model. Here, we have also drawn a comparison among those models.Comment: 17 pages, 11 figures, 1 tabl
The Visual Impairment Intracranial Pressure Syndrome in Long Duration NASA Astronauts: An Integrated Approach
The Visual Impairment Intracranial Pressure (VIIP) syndrome is currently NASA's number one human space flight risk. The syndrome, which is related to microgravity exposure, manifests with changes in visual acuity (hyperopic shifts, scotomas), changes in eye structure (optic disc edema, choroidal folds, cotton wool spots, globe flattening, and distended optic nerve sheaths). In some cases, elevated cerebrospinal fluid pressure has been documented postflight reflecting increased intracranial pressure (ICP). While the eye appears to be the main affected end organ of this syndrome, the ocular affects are thought to be related to the effect of cephalad fluid shift on the vascular system and the central nervous system. The leading hypotheses for the development of VIIP involve microgravity induced head-ward fluid shifts along with a loss of gravity-assisted drainage of venous blood from the brain, both leading to cephalic congestion and increased ICP. Although not all crewmembers have manifested clinical signs or symptoms of the VIIP syndrome, it is assumed that all astronauts exposed to microgravity have some degree of ICP elevation in-flight. Prolonged elevations of ICP can cause long-term reduced visual acuity and loss of peripheral visual fields, and has been reported to cause mild cognitive impairment in the analog terrestrial population of Idiopathic Intracranial Hypertension (IIH). These potentially irreversible health consequences underscore the importance of identifying the factors that lead to this syndrome and mitigating them
- …