29 research outputs found

    Immobilized Saccharomyces cerevisiae as a potential aflatoxin decontaminating agent in pistachio nuts

    No full text
    In this study, we investigated the binding ability of Saccharomayces cerevisiae to aflatoxin in pistachio nuts. The obtained results indicate that S. cerevisiae has an aflatoxin surface binding ability of 40% and 70% (with initial aflatoxin concentrations of 10 and 20 ppb) in the exponential phase. Acid treatments increase this ability to approximately 60% and 73% for the two concentrations of aflatoxin, respectively. Heat treatments also enhance surface binding to 55% and 75%, respectively. Binding appears to be a physical phenomenon that saturates within the first 2-3 hours of the process. The obtained results indicate that yeast immobilization for toxin reduction on aflatoxin-contaminated pistachios had no effect on qualitative characteristics, such as color, texture, and peroxide value. Yeast cells, viable or nonviable, are effective for aflatoxin binding, and this property could lead to a promising solution to aflatoxin contamination in high-risk foods

    Design, fabrication, and optimization of a dual function three-layer scaffold for controlled release of metformin hydrochloride to alleviate fibrosis and accelerate wound healing

    No full text
    Abnormal wound healing caused by the over-expression of collagen and fibronectin leads to fibrosis, the major complication of all treatment modalities. A three-layer nanofiber scaffold was designed, optimized, and fabricated. This scaffold comprised two supportive polycaprolactone (PCL)-chitosan layers on the sides and a polyvinyl alcohol (PVA)-metformin hydrochloride (metformin-HCl) in the middle. The physico-chemical properties of scaffold, such as mechanical characteristics, degradation, swelling, and in-vitro drug release, were evaluated. The biological tests, including cell viability in response to metformin-HCl and Tween 80, scaffold biocompatibility, cell attachment, and antibacterial activity, were further conducted. The wound healing effect of scaffold loaded with metformin-HCl (MSc+Met) was assessed in donut-shaped silicone splints in rats. Histopathological and immunohistochemical evaluation as well as mRNA expression levels of fibrosis markers were also studied. SEM images indicated a uniform, bead-less morphology and high porosity. Surface modification of scaffold by Tween 80 improved the surface hydrophilicity and enhanced the adhesion and proliferation of fibroblasts. The scar area on day 15 in MSc+Met was significantly lower than that of other groups. Histopathological and immunohistochemical evaluation revealed that group MSc+Met was the best, having significantly lower inflammation, higher angiogenesis, the smallest scar width and depth, maximum epitheliogenesis score, and the most optimal modulation of collagen density. Local administration of metformin-HCl substantially down-regulated the expression of fibrosis-involved genes: transforming growth factor (TGF-β1), collagen type 1 (Col-I), fibronectin, collagen type 3 (Col-III), and alpha-smooth muscle actin (α-SMA). Inhibiting these genes alleviates scar formation but delays wound healing; thus, an engineered scaffold was used to prevent delay in wound healing. These results provided evidence for the first time to introduce an anti-fibrogenic slow-releasing scaffold, which acts in a dual role, both alleviating fibrosis and accelerating wound healing. © 202

    A MYB gene from wheat (Triticum aestivum L.) is up-regulated during salt and drought stresses and differentially regulated between salt-tolerant and sensitive genotypes

    No full text
    Crop adaptation to abiotic stresses requires alterations in expression of a large number of stress protection genes and their regulators, including transcription factors. In this study, the expression levels of ten MYB transcription factor genes from wheat (Triticum aestivum) were examined in two recombinant inbred lines contrasting in their salt tolerance in response to salt or drought stress. Quantitative RT-PCR analysis revealed that four MYB genes were consistently up-regulated in the seedling roots of both genotypes under short-term salt treatment. Three MYB genes were found to be up-regulated in both genotypes under long-term salt stress. One MYB gene was up-regulated in both genotypes under both short- and long-term salt stress. Of these salt up-regulated MYB genes, one MYB gene (TaMYBsdu1) was markedly up-regulated in the leaf and root of wheat under long-term drought stress. In addition, TaMYBsdu1 showed higher expression levels in the salt-tolerant genotype than in the susceptible genotype under salt stress. These data suggest that TaMYBsdu1 is a potentially important regulator involved in wheat adaptation to both salt and drought stresses
    corecore