237 research outputs found

    Linear systems with adiabatic fluctuations

    Full text link
    We consider a dynamical system subjected to weak but adiabatically slow fluctuations of external origin. Based on the ``adiabatic following'' approximation we carry out an expansion in \alpha/|\mu|, where \alpha is the strength of fluctuations and 1/|\mu| refers to the time scale of evolution of the unperturbed system to obtain a linear differential equation for the average solution. The theory is applied to the problems of a damped harmonic oscillator and diffusion in a turbulent fluid. The result is the realization of `renormalized' diffusion constant or damping constant for the respective problems. The applicability of the method has been critically analyzed.Comment: Plain Latex, no figure, 21 page

    Theory of Adiabatic fluctuations : third-order noise

    Full text link
    We consider the response of a dynamical system driven by external adiabatic fluctuations. Based on the `adiabatic following approximation' we have made a systematic separation of time-scales to carry out an expansion in αμ1\alpha |\mu|^{-1}, where α\alpha is the strength of fluctuations and μ|\mu| is the damping rate. We show that probability distribution functions obey the differential equations of motion which contain third order terms (beyond the usual Fokker-Planck terms) leading to non-Gaussian noise. The problem of adiabatic fluctuations in velocity space which is the counterpart of Brownian motion for fast fluctuations, has been solved exactly. The characteristic function and the associated probability distribution function are shown to be of stable form. The linear dissipation leads to a steady state which is stable and the variances and higher moments are shown to be finite.Comment: Plain Latex, no figures, 28 pages; to appear in J. Phys.

    Thermodynamics of adiabatic feedback control

    Full text link
    We study adaptive control of classical ergodic Hamiltonian systems, where the controlling parameter varies slowly in time and is influenced by system's state (feedback). An effective adiabatic description is obtained for slow variables of the system. A general limit on the feedback induced negative entropy production is uncovered. It relates the quickest negentropy production to fluctuations of the control Hamiltonian. The method deals efficiently with the entropy-information trade off.Comment: 6 pages, 1 figur

    Minimal Work Principle and its Limits for Classical Systems

    Full text link
    The minimal work principle asserts that work done on a thermally isolated equilibrium system, is minimal for the slowest (adiabatic) realization of a given process. This principle, one of the formulations of the second law, is operationally well-defined for any finite (few particle) Hamiltonian system. Within classical Hamiltonian mechanics, we show that the principle is valid for a system of which the observable of work is an ergodic function. For non-ergodic systems the principle may or may not hold, depending on additional conditions. Examples displaying the limits of the principle are presented and their direct experimental realizations are discussed.Comment: 4 + epsilon pages, 1 figure, revte

    Propagation of an Earth-directed coronal mass ejection in three dimensions

    Full text link
    Solar coronal mass ejections (CMEs) are the most significant drivers of adverse space weather at Earth, but the physics governing their propagation through the heliosphere is not well understood. While stereoscopic imaging of CMEs with the Solar Terrestrial Relations Observatory (STEREO) has provided some insight into their three-dimensional (3D) propagation, the mechanisms governing their evolution remain unclear due to difficulties in reconstructing their true 3D structure. Here we use a new elliptical tie-pointing technique to reconstruct a full CME front in 3D, enabling us to quantify its deflected trajectory from high latitudes along the ecliptic, and measure its increasing angular width and propagation from 2-46 solar radii (approximately 0.2 AU). Beyond 7 solar radii, we show that its motion is determined by an aerodynamic drag in the solar wind and, using our reconstruction as input for a 3D magnetohydrodynamic simulation, we determine an accurate arrival time at the Lagrangian L1 point near Earth.Comment: 5 figures, 2 supplementary movie

    POSIWID and determinism in design for behaviour change

    Get PDF
    Copyright @ 2012 Social Services Research GroupWhen designing to influence behaviour for social or environmental benefit, does designers' intent matter? Or are the effects on behaviour more important, regardless of the intent involved? This brief paper explores -- in the context of design for behaviour change -- some treatments of design, intentionality, purpose and responsibility from a variety of fields, including Stafford Beer's "The purpose of a system is what it does" and Maurice Broady's perspective on determinism. The paper attempts to extract useful implications for designers working on behaviour-related problems, in terms of analytical or reflective questions to ask during the design process

    Markov analysis of stochastic resonance in a periodically driven integrate-fire neuron

    Full text link
    We model the dynamics of the leaky integrate-fire neuron under periodic stimulation as a Markov process with respect to the stimulus phase. This avoids the unrealistic assumption of a stimulus reset after each spike made in earlier work and thus solves the long-standing reset problem. The neuron exhibits stochastic resonance, both with respect to input noise intensity and stimulus frequency. The latter resonance arises by matching the stimulus frequency to the refractory time of the neuron. The Markov approach can be generalized to other periodically driven stochastic processes containing a reset mechanism.Comment: 23 pages, 10 figure
    corecore