2,042 research outputs found
Recommended from our members
Manculus and M. quadridigitatus
Number of Pages: 2Integrative BiologyGeological Science
The Cerebellum and SIDS: Disordered Breathing in a Mouse Model of Developmental Cerebellar Purkinje Cell Loss during Recovery from Hypercarbia.
The cerebellum assists coordination of somatomotor, respiratory, and autonomic actions. Purkinje cell alterations or loss appear in sudden infant death and sudden death in epilepsy victims, possibly contributing to the fatal event. We evaluated breathing patterns in 12 wild-type (WT) and Lurcher mutant mice with 100% developmental cerebellar Purkinje cell loss under baseline (room air), and recovery from hypercapnia, a concern in sudden death events. Six mutant and six WT mice were exposed to 4-min blocks of increasing CO2 (2, 4, 6, and 8%), separated by 4-min recovery intervals in room air. Breath-by-breath patterns, including depth of breathing and end-expiratory pause (EEP) durations during recovery, were recorded. No baseline genotypic differences emerged. However, during recovery, EEP durations significantly lengthened in mutants, compared to WT mice, following the relatively low levels of CO2 exposure. Additionally, mutant mice exhibited signs of post-sigh disordered breathing during recovery following each exposure. Developmental cerebellar Purkinje cell loss significantly affects compensatory breathing patterns following mild CO2 exposure, possibly by inhibiting recovery from elevated CO2. These data implicate cerebellar Purkinje cells in the ability to recover from hypercarbia, suggesting that neuropathologic changes or loss of these cells contribute to inadequate ventilatory recovery to increased environmental CO2. Multiple disorders, including sudden infant death syndrome (SIDS) and sudden unexpected death in epilepsy (SUDEP), appear to involve both cardiorespiratory failure and loss or injury to cerebellar Purkinje cells; the findings support the concept that such neuropathology may precede and exert a prominent role in these fatal events
Collective electromagnetic relaxation in crystals of molecular magnets
We study the magnetization reversal and electromagnetic radiation due to
collective Landau-Zener relaxation in a crystal of molecular magnets.
Analytical and numerical solutions for the time dependence of the relaxation
process are obtained. The power of the radiation and the total emitted energy
are computed as functions of the crystal parameters and the field sweep rate.Comment: 7 pages, 9 figure
Sub-wavelength imaging at infrared frequencies using an array of metallic nanorods
We demonstrate that an array of metallic nanorods enables sub-wavelength
(near-field) imaging at infrared frequencies. Using an homogenization approach,
it is theoretically proved that under certain conditions the incoming radiation
can be transmitted by the array of nanorods over a significant distance with
fairly low attenuation. The propagation mechanism does not involve a resonance
of material parameters and thus the resolution is not strongly affected by
material losses and has wide bandwidth. The sub-wavelength imaging with
resolution by silver rods at 30 THz is demonstrated numerically
using full-wave electromagnetic simulator.Comment: 12 pages, 16 figures, submitted to PR
A terahertz band-pass resonator based on enhanced reflectivity using spoof surface plasmons
We demonstrate a band-pass resonator in the terahertz (THz) range, based on a frequency-selective designer reflector. The resonator consists of a parallel-plate waveguide, a designed groove pattern cut into the output facet of each plate, and a reflecting mirror. The patterned facet supports a spoof surface plasmon mode, which modifies the reflectivity at the waveguide output facet by interacting with the waveguide mode. By tuning the geometrical parameters of the groove pattern, the reflectivity at the patterned output facet can be increased up to ~100% for a selected frequency. Broadband THz waves are quasi-optically coupled into this resonator and reflected multiple times from the patterned facet. This leads to a narrowing of the spectrum at the selected frequency. The Q value of the resonator increases as the number of reflections on the patterned facet increases, reaching ~25 when the THz wave has experienced 12 reflections
Sub-wavelength terahertz beam profiling of a THz source via an all-optical knife-edge technique
Terahertz technologies recently emerged as outstanding candidates for a variety of applications in such sectors as security, biomedical, pharmaceutical, aero spatial, etc. Imaging the terahertz field, however, still remains a challenge, particularly when sub-wavelength resolutions are involved. Here we demonstrate an all-optical technique for the terahertz near-field imaging directly at the source plane. A thin layer (<100 nm-thickness) of photo carriers is induced on the surface of the terahertz generation crystal, which acts as an all-optical, virtual blade for terahertz near-field imaging via a knife-edge technique. Remarkably, and in spite of the fact that the proposed approach does not require any mechanical probe, such as tips or apertures, we are able to demonstrate the imaging of a terahertz source with deeply sub-wavelength features (<30 μm) directly in its emission plane
Exciton-LO-phonon dynamics in InAs/GaAs quantum dots: Effects of zone-edge phonon damping
The dynamics of an exciton-LO-phonon system after an ultrafast optical
excitation in an InAs/GaAs quantum dot is studied theoretically. Influence of
anharmonic phonon damping and its interplay with the phonon dispersion is
analyzed. The signatures of the zone-edge decay process in the absorption
spectrum and time evolution are highlighted, providing a possible way of
experimental investigation on phonon anharmonicity effects.Comment: 10 pages, 2 figure
Optical Hall Effect in the Integer Quantum Hall Regime
Optical Hall conductivity is measured from the Faraday
rotation for a GaAs/AlGaAs heterojunction quantum Hall system in the terahertz
frequency regime. The Faraday rotation angle ( fine structure constant
mrad) is found to significantly deviate from the Drude-like behavior to
exhibit a plateau-like structure around the Landau-level filling . The
result, which fits with the behavior expected from the carrier localization
effect in the ac regime, indicates that the plateau structure, although not
quantized, still exists in the terahertz regime.Comment: 4 pages, 4 figure
36th Annual International Conference on Infrared Millimeter and Terahertz Waves
The Major Topic List of the 2011 conference featured a category entitled “IR, millimeter-wave, and THz spectroscopy,” another entitled “Gyro- Oscillators and Amplifiers, Plasma Diagnostics,” and a third called “Free Electron Lasers and Synchrotron Radiation.” Topical areas of interest to meeting participants include millimeter-wave electronics, high-power sources, high-frequency communications systems, and terahertz sensing and imaging, all of which are prominent in the research portfolios of the DOE. The development and study of new materials, components, and systems for use in the IR, THz, and MMW regions of the spectrum are of significant interest as well. a series of technical sessions were organized on the following topics: terahertz metamaterials and plasmonics; imaging techniques and applications; graphene spectroscopy; waveguide concepts; gyrotron science and technology; ultrafast terahertz measurements; and quantum cascade lasers
- …