15 research outputs found

    Contactless terahertz sensing of ultrafast switching in Marx generator based on avalanche transistors

    No full text
    Abstract In this letter, we have studied the temporal evolution of switching for each stage of the Marx generator with picosecond temporal and millimeter spatial resolutions employing terahertz measurements. The Marx circuit utilizes collapsing-field-domain (CFD)-based avalanche switches, which are formed in a bipolar GaAs structure and result in the picosecond speed of powerful carrier generation and electrical switching. The application of the CFD-based avalanche switches emitting mm-wave pulsed radiation in the Marx generator provides a unique opportunity to accurately track the switching instants for each of the circuit stages with a picosecond time precision. The collapsing domains cause the sub-THz pulses radiated by each of the avalanche switches, and the same domains generate the electron-hole plasma thus causing simultaneously the electrical switching. In this work, we report the direct measurements of the switching instants for each of the four stages Marx generator and suggest an interpretation of non-trivial experimental results

    Optical activity of graphene-based chiral metasurface in THz frequency range

    No full text
    Abstract In this paper the optical activity of two types of graphene-based chiral metasurfaces with two different variations of graphene inclusion positions was studied. The gammadion resonators of the unit cell were partly made of graphene. Three resonant frequencies of the metasurfaces in the frequency range of 0.1—0.5 THz were found. It is shown that the value of optical activity expressed in azimuth polarization rotation angle strongly depends on the chemical potential of graphene petals, as well as on the position of graphene inclusions

    Graphene-based optically tunable structure for terahertz polarization control

    No full text
    Abstract We present a theoretical model of optically tunable graphene-based structure for polarization characteristics control of transmitted terahertz (THz) wave. The experimental verification was performed using a THz time-domain polarimetry setup. The tunability is achieved by applying an external optical pumping and magnetic field. The structure shows the possibility for dynamical control of ellipticity and azimuth angles of polarization state of THz radiation in a transmission mode. This study indicates a strong potential for using graphene-based structures for polarization sensitive applications such as THz wireless communications and biomedical research

    Terahertz time-domain polarimetry of carbon nanomaterials

    No full text
    Abstract Terahertz time-domain spectroscopic polarimetry (THz-TDSP) method was used to study of polarization properties of a few-layer graphene (FLG) and a randomly oriented single-walled carbon nanotube (SWCNT) thin film on silicon (Si) substrates in terahertz (THz) frequency range under an external optical pumping (OP) and an external static magnetic field (MF). Frequency dependencies of azimuth and ellipticity angles of a polarization ellipse of the samples were obtained experimentally. The results confirm the fact that, based on carbon nanomaterials, it is possible to devise tunable THz polarization modulators for use in the latest security and telecommunication systems
    corecore