49 research outputs found
Light Spanners
A -spanner of a weighted undirected graph , is a subgraph
such that for all . The sparseness of
the spanner can be measured by its size (the number of edges) and weight (the
sum of all edge weights), both being important measures of the spanner's
quality -- in this work we focus on the latter.
Specifically, it is shown that for any parameters and ,
any weighted graph on vertices admits a
-stretch spanner of weight at most , where is the weight of a minimum
spanning tree of . Our result is obtained via a novel analysis of the
classic greedy algorithm, and improves previous work by a factor of .Comment: 10 pages, 1 figure, to appear in ICALP 201
Weak Fourier-Schur sampling, the hidden subgroup problem, and the quantum collision problem
Schur duality decomposes many copies of a quantum state into subspaces
labeled by partitions, a decomposition with applications throughout quantum
information theory. Here we consider applying Schur duality to the problem of
distinguishing coset states in the standard approach to the hidden subgroup
problem. We observe that simply measuring the partition (a procedure we call
weak Schur sampling) provides very little information about the hidden
subgroup. Furthermore, we show that under quite general assumptions, even a
combination of weak Fourier sampling and weak Schur sampling fails to identify
the hidden subgroup. We also prove tight bounds on how many coset states are
required to solve the hidden subgroup problem by weak Schur sampling, and we
relate this question to a quantum version of the collision problem.Comment: 21 page
An efficient quantum algorithm for the hidden subgroup problem in extraspecial groups
Extraspecial groups form a remarkable subclass of p-groups. They are also
present in quantum information theory, in particular in quantum error
correction. We give here a polynomial time quantum algorithm for finding hidden
subgroups in extraspecial groups. Our approach is quite different from the
recent algorithms presented in [17] and [2] for the Heisenberg group, the
extraspecial p-group of size p3 and exponent p. Exploiting certain nice
automorphisms of the extraspecial groups we define specific group actions which
are used to reduce the problem to hidden subgroup instances in abelian groups
that can be dealt with directly.Comment: 10 page
The Optimal Single Copy Measurement for the Hidden Subgroup Problem
The optimization of measurements for the state distinction problem has
recently been applied to the theory of quantum algorithms with considerable
successes, including efficient new quantum algorithms for the non-abelian
hidden subgroup problem. Previous work has identified the optimal single copy
measurement for the hidden subgroup problem over abelian groups as well as for
the non-abelian problem in the setting where the subgroups are restricted to be
all conjugate to each other. Here we describe the optimal single copy
measurement for the hidden subgroup problem when all of the subgroups of the
group are given with equal a priori probability. The optimal measurement is
seen to be a hybrid of the two previously discovered single copy optimal
measurements for the hidden subgroup problem.Comment: 8 pages. Error in main proof fixe
Ontology-based data access with databases: a short course
Ontology-based data access (OBDA) is regarded as a key ingredient of the new generation of information systems. In the OBDA paradigm, an ontology defines a high-level global schema of (already existing) data sources and provides a vocabulary for user queries. An OBDA system rewrites such queries and ontologies into the vocabulary of the data sources and then delegates the actual query evaluation to a suitable query answering system such as a relational database management system or a datalog engine. In this chapter, we mainly focus on OBDA with the ontology language OWL 2QL, one of the three profiles of the W3C standard Web Ontology Language OWL 2, and relational databases, although other possible languages will also be discussed. We consider different types of conjunctive query rewriting and their succinctness, different architectures of OBDA systems, and give an overview of the OBDA system Ontop
Jamming Model for the Extremal Optimization Heuristic
Extremal Optimization, a recently introduced meta-heuristic for hard
optimization problems, is analyzed on a simple model of jamming. The model is
motivated first by the problem of finding lowest energy configurations for a
disordered spin system on a fixed-valence graph. The numerical results for the
spin system exhibit the same phenomena found in all earlier studies of extremal
optimization, and our analytical results for the model reproduce many of these
features.Comment: 9 pages, RevTex4, 7 ps-figures included, as to appear in J. Phys. A,
related papers available at http://www.physics.emory.edu/faculty/boettcher
Computational Indistinguishability between Quantum States and Its Cryptographic Application
We introduce a computational problem of distinguishing between two specific
quantum states as a new cryptographic problem to design a quantum cryptographic
scheme that is "secure" against any polynomial-time quantum adversary. Our
problem, QSCDff, is to distinguish between two types of random coset states
with a hidden permutation over the symmetric group of finite degree. This
naturally generalizes the commonly-used distinction problem between two
probability distributions in computational cryptography. As our major
contribution, we show that QSCDff has three properties of cryptographic
interest: (i) QSCDff has a trapdoor; (ii) the average-case hardness of QSCDff
coincides with its worst-case hardness; and (iii) QSCDff is computationally at
least as hard as the graph automorphism problem in the worst case. These
cryptographic properties enable us to construct a quantum public-key
cryptosystem, which is likely to withstand any chosen plaintext attack of a
polynomial-time quantum adversary. We further discuss a generalization of
QSCDff, called QSCDcyc, and introduce a multi-bit encryption scheme that relies
on similar cryptographic properties of QSCDcyc.Comment: 24 pages, 2 figures. We improved presentation, and added more detail
proofs and follow-up of recent wor
On the complexity of 2d discrete fixed point problem
Abstract. We study a computational complexity version of the two dimensional Sperner problem, which states that any three coloring of vertices of a triangulated triangle, satisfying some boundary conditions, will have a trichromatic triangle. In introducing a complexity class PPAD, Papadimitriou [9] proved a three dimensional analogue is PPAD-complete about fifteen years ago. The complexity of 2D-SPERNER itself has remained open since then. We settle this open problem with a PPAD-complete proof. The result also allows us to derive the computational complexity characterization of a discrete version of the 2-dimensional Brouwer fixed point problem, improving a recent result of Daskalakis, Goldberg and Papadimitriou [4]. Those hardness results for the simplest version of those problems provide very useful tools to the study of other important problems in the PPAD class.