261 research outputs found

    The polarized expression of Na+,K+-ATPase in epithelia depends on the association between beta-subunits located in neighboring cells

    Get PDF
    The polarized distribution of Na+,K+-ATPase plays a paramount physiological role, because either directly or through coupling with co- and countertransporters, it is responsible for the net movement of, for example, glucose, amino acids, Ca2+, K+, Cl-, and CO3H- across the whole epithelium. We report here that the beta-subunit is a key factor in the polarized distribution of this enzyme. 1) Madin-Darby canine kidney (MDCK) cells (epithelial from dog kidney) express the Na+,K+-ATPase over the lateral side, but not on the basal and apical domains, as if the contact with a neighboring cell were crucial for the specific membrane location of this enzyme. 2) MDCK cells cocultured with other epithelial types (derived from human, cat, dog, pig, monkey, rabbit, mouse, hamster, and rat) express the enzyme in all (100%) homotypic MDCK/MDCK borders but rarely in heterotypic ones. 3) Although MDCK cells never express Na+,K+-ATPase at contacts with Chinese hamster ovary (CHO) cells, they do when CHO cells are transfected with beta(1)-subunit from the dog kidney (CHO-beta). 4) This may be attributed to the adhesive property of the beta(1)-subunit, because an aggregation assay using CHO (mock-transfected) and CHO-beta cells shows that the expression of dog beta(1)-subunit in the plasma membrane does increase adhesiveness. 5) This adhesiveness does not involve adherens or tight junctions. 6) Transfection of beta(1)-subunit forces CHO-beta cells to coexpress endogenous a-subunit. Together, our results indicate that MDCK cells express Na+,K+-ATPase at a given border provided the contacting cell expresses the dog P,-subunit. The cell-cell interaction thus established would suffice to account for the polarized expression and positioning of Na+,K+-ATPase in epithelial cells

    Physiological role of hormone ouabain

    Get PDF
    Ouabain, a substance obtained from plant extracts, has been long known as cardiotonic, as well as by its high affinity to the Na-K- ATPase pump. The recent finding that ouabain is endogenously expressed in mammals has prompted research to determine its role as a hormone. We have shown that, in a physiological level (10 nM), it influences on three important features of epithelial physiology related to cell to cell contacts: (1) It modifies the Tight Junction integrity, as reflected by an increase in the Transepithelial Electrical Resistance (TER) of mature monolayers of MDCK cells. (2) It speeds up ciliogenesis, a feature closely related to epithelial (Apical/Basolateral) polarity and (3) It triggers Gap Junctional Intercellular Communication (GJIC). Since lack of GJIC has been associated to cancer, ouabain may be an interesting player on this issue.Sociedad Argentina de Fisiologí

    Lymphocytes Accelerate Epithelial Tight Junction Assembly: Role of AMP-Activated Protein Kinase (AMPK)

    Get PDF
    The tight junctions (TJs), characteristically located at the apicolateral borders of adjacent epithelial cells, are required for the proper formation of epithelial cell polarity as well as for sustaining the mucosal barrier to the external environment. The observation that lymphocytes are recruited by epithelial cells to the sites of infection [1] suggests that they may play a role in the modulation of epithelial barrier function and thus contribute to host defense. To test the ability of lymphocytes to modulate tight junction assembly in epithelial cells, we set up a lymphocyte-epithelial cell co-culture system, in which Madin-Darby canine kidney (MDCK) cells, a well-established model cell line for studying epithelial TJ assembly [2], were co-cultured with mouse lymphocytes to mimic an infection state. In a typical calcium switch experiment, the TJ assembly in co-culture was found to be accelerated compared to that in MDCK cells alone. This accelaration was found to be mediated by AMP-activated protein kinase (AMPK). AMPK activation was independent of changes in cellular ATP levels but it was found to be activated by the pro-inflammatory cytokine TNF-α. Forced suppression of AMPK, either with a chemical inhibitor or by knockdown, abrogated the accelerating effect of lymphocytes on TJ formation. Similar results were also observed in a co-culture with lymphocytes and Calu-3 human airway epithelial cells, suggesting that the activation of AMPK may be a general mechanism underlying lymphocyte-accelerated TJ assembly in different epithelia. These results suggest that signals from lymphocytes, such as cytokines, facilitate TJ assembly in epithelial cells via the activation of AMPK

    Structure and Function of ABCG2-Rich Extracellular Vesicles Mediating Multidrug Resistance

    Get PDF
    Multidrug resistance (MDR) is a major impediment to curative cancer chemotherapy. The ATP-Binding Cassette transporters ABCG2, ABCB1 and ABCC2 form a unique defense network against multiple structurally and functionally distinct chemotherapeutics, thereby resulting in MDR. Thus, deciphering novel mechanisms of MDR and their overcoming is a major goal of cancer research. Recently we have shown that overexpression of ABCG2 in the membrane of novel extracellular vesicles (EVs) in breast cancer cells results in mitoxantrone resistance due to its dramatic sequestration in EVs. However, nothing is known about EVs structure, biogenesis and their ability to concentrate multiple antitumor agents. To this end, we here found that EVs are structural and functional homologues of bile canaliculi, are apically localized, sealed structures reinforced by an actin-based cytoskeleton and secluded from the extracellular milieu by the tight junction proteins occludin and ZO-1. Apart from ABCG2, ABCB1 and ABCC2 were also selectively targeted to the membrane of EVs. Moreover, Ezrin-Radixin-Moesin protein complex selectively localized to the border of the EVs membrane, suggesting a key role for the tethering of MDR pumps to the actin cytoskeleton. The ability of EVs to concentrate and sequester different antitumor drugs was also explored. Taking advantage of the endogenous fluorescence of anticancer drugs, we found that EVs-forming breast cancer cells display high level resistance to topotecan, imidazoacridinones and methotrexate via efficient intravesicular drug concentration hence sequestering them away from their cellular targets. Thus, we identified a new modality of anticancer drug compartmentalization and resistance in which multiple chemotherapeutics are actively pumped from the cytoplasm and highly concentrated within the lumen of EVs via a network of MDR transporters differentially targeted to the EVs membrane. We propose a composite model for the structure and function of MDR pump-rich EVs in cancer cells and their ability to confer multiple anticancer drug resistance

    Freshwater Sponges Have Functional, Sealing Epithelia with High Transepithelial Resistance and Negative Transepithelial Potential

    Get PDF
    Epithelial tissue — the sealed and polarized layer of cells that regulates transport of ions and solutes between the environment and the internal milieu — is a defining characteristic of the Eumetazoa. Sponges, the most ancient metazoan phylum [1], [2], are generally believed to lack true epithelia [3], [4], [5], but their ability to occlude passage of ions has never been tested. Here we show that freshwater sponges (Demospongiae, Haplosclerida) have functional epithelia with high transepithelial electrical resistance (TER), a transepithelial potential (TEP), and low permeability to small-molecule diffusion. Curiously, the Amphimedon queenslandica sponge genome lacks the classical occluding genes [5] considered necessary to regulate sealing and control of ion transport. The fact that freshwater sponge epithelia can seal suggests that either occluding molecules have been lost in some sponge lineages, or demosponges use novel molecular complexes for epithelial occlusion; if the latter, it raises the possibility that mechanisms for occlusion used by sponges may exist in other metazoa. Importantly, our results imply that functional epithelia evolved either several times, or once, in the ancestor of the Metazoa
    corecore