210 research outputs found

    On the existence of supersolid helium-4 monolayer films

    Full text link
    Extensive Monte Carlo simulations of helium-4 monolayer films adsorbed on weak substrates have been carried out, aimed at ascertaining the possible occurrence of a quasi-two-dimensional supersolid phase. Only crystalline films not registered with underlying substrates are considered. Numerical results yield strong evidence that helium-4 will not form a supersolid film on {any} substrate strong enough to stabilize a crystalline layer. On weaker substrates, continuous growth of a liquid film takes place

    Vacancy supersolid of hard-core bosons on the square lattice

    Full text link
    The ground state of hard-core bosons on the square lattice with nearest and next-nearest neighbor repulsion is studied by Quantum Monte Carlo simulations. A supersolid phase with vacancy condensation and 'star' diagonal ordering is found for filling less than a quarter. At fillings above one quarter, a supersolid phase exists between the star and the stripe crystal at half-filling. No supersolid phase occurs above quarter-filling, if the ground state at half-filling is either a checkerboard crystal or a superfluid. No commensurate supersolid phase is observed.Comment: Replaced with published versio

    Adsorption of para-Hydrogen on Krypton pre-plated graphite

    Full text link
    Adsorption of para-Hydrogen on the surface of graphite pre-plated with a single layer of atomic krypton is studied thoretically by means of Path Integral Ground State Monte Carlo simulations. We compute energetics and density profiles of para-hydrogen, and determine the structure of the adsorbed film for various coverages. Results show that there are two thermodynamically stable monolayer phases of para-hydrogen, both solid. One is commensurate with the krypton layer, the other is incommensurate. No evidence is seen of a thermodynamically stable liquid phase, at zero temperature. These results are qualitatively similar to what is seen for for para-hydrogen on bare graphite. Quantum exchanges of hydrogen molecules are suppressed in this system.Comment: 12 pages, 6 figures, to appear in the proceedings of "Advances in Computational Many-Body Physics", Banff, Alberta (Canada), January 13-16 200

    Phase diagram of soft-core bosons in two dimensions

    Full text link
    The low temperature phase diagram of Bose soft disks in two dimensions is studied by numerical simulations. It is shown that a supersolid cluster phase exists, within a range of the model parameters, analogous to that recently observed for a system of aligned dipoles interacting via a softened potential at short distance. These findings indicate that a long-range tail of the interaction is unneeded to obtain such a phase, and that the soft-core repulsive interaction is the minimal model for supersolidity

    Absence of Superfluidity in 2D Dipolar Bose Striped Crystals

    Get PDF
    We present results of computer simulations at low temperature of a two-dimensional system of dipolar bosons, with dipole moments aligned at an arbitrary angle with respect to the direction perpendicular to the plane. The phase diagram includes a homogeneous superfluid phase, as well as triangular and striped crystalline phases, as the particle density and the tilt angle are varied. In the striped solid, no phase coherence among stripes and consequently no ``supersolid" phase is found, in disagreement with recent theoretical predictions.Comment: Accepted for publication as a Rapid Communication in the Journal of Low Temperature Physic

    Thin helium film on a glass substrate

    Full text link
    We investigate by Monte Carlo simulations the structure, energetics and superfluid properties of thin helium-four films (up to four layers) on a glass substrate, at low temperature. The first adsorbed layer is found to be solid and "inert", i.e., atoms are localized and do not participate to quantum exchanges. Additional layers are liquid, with no clear layer separation above the second one. It is found that a single helium-three impurity resides on the outmost layer, not significantly further away from the substrate than helium-four atoms on the same layer.Comment: Six figures, submitted for publication to the Journal of Low Temperature Physic

    Worm Algorithm for Continuous-space Path Integral Monte Carlo Simulations

    Get PDF
    We present a new approach to path integral Monte Carlo (PIMC) simulations based on the worm algorithm, originally developed for lattice models and extended here to continuous-space many-body systems. The scheme allows for efficient computation of thermodynamic properties, including winding numbers and off-diagonal correlations, for systems of much greater size than that accessible to conventional PIMC. As an illustrative application of the method, we simulate the superfluid transition of Helium-four in two dimensions.Comment: Fig. 2 differs from that of published version (includes data for larger system sizes
    • …
    corecore