2,378 research outputs found

    Nonequilibrium Phase Transitions in a Driven Sandpile Model

    Get PDF
    We construct a driven sandpile slope model and study it by numerical simulations in one dimension. The model is specified by a threshold slope \sigma_c\/, a parameter \alpha\/, governing the local current-slope relation (beyond threshold), and jinj_{\rm in}, the mean input current of sand. A nonequilibrium phase diagram is obtained in the \alpha\, -\, j_{\rm in}\/ plane. We find an infinity of phases, characterized by different mean slopes and separated by continuous or first-order boundaries, some of which we obtain analytically. Extensions to two dimensions are discussed.Comment: 11 pages, RevTeX (preprint format), 4 figures available upon requs

    Direct numerical simulations of statistically steady, homogeneous, isotropic fluid turbulence with polymer additives

    Get PDF
    We carry out a direct numerical simulation (DNS) study that reveals the effects of polymers on statistically steady, forced, homogeneous, isotropic fluid turbulence. We find clear manifestations of dissipation-reduction phenomena: On the addition of polymers to the turbulent fluid, we obtain a reduction in the energy dissipation rate, a significant modification of the fluid energy spectrum, especially in the deep-dissipation range, a suppression of small-scale intermittency, and a decrease in small-scale vorticity filaments. We also compare our results with recent experiments and earlier DNS studies of decaying fluid turbulence with polymer additives.Comment: consistent with the published versio

    Condensation of Silica Nanoparticles on a Phospholipid Membrane

    Full text link
    The structure of the transient layer at the interface between air and the aqueous solution of silica nanoparticles with the size distribution of particles that has been determined from small-angle scattering has been studied by the X-ray reflectometry method. The reconstructed depth profile of the polarizability of the substance indicates the presence of a structure consisting of several layers of nanoparticles with the thickness that is more than twice as large as the thickness of the previously described structure. The adsorption of 1,2-distearoyl-sn-glycero-3-phosphocholine molecules at the hydrosol/air interface is accompanied by the condensation of anion silica nanoparticles at the interface. This phenomenon can be qualitatively explained by the formation of the positive surface potential due to the penetration and accumulation of Na+ cations in the phospholipid membrane.Comment: 7 pages, 5 figure

    Ventricular remodelling in rabbits with sustained high‐fat diet

    Full text link
    Aim Excess weight gain and obesity are one of the most serious health problems in the western societies. These conditions enhance risk of cardiac disease and have been linked with increased prevalence for cardiac arrhythmias and sudden death. Our goal was to study the ventricular remodelling occurring in rabbits fed with high‐fat diet ( HFD ) and its potential arrhythmogenic mechanisms. Methods We used 15 NZW rabbits that were randomly assigned to a control ( n  = 7) or HFD group ( n  = 8) for 18 weeks. In vivo studies included blood glucose, electrocardiographic, and echocardiographic measurements. Optical mapping was performed in Langendorff‐perfused isolated hearts. Results Body weight (3.69 ± 0.31 vs. 2.94 ± 0.18 kg, P  < 0.001) and blood glucose levels (230 ± 61 vs. 141 ± 14 mg dL −1 , P  < 0.05) were higher in the HFD group vs. controls. The rate‐corrected QT interval and its dispersion were increased in HFD rabbits vs. controls (169 ± 10 vs. 146 ± 13 ms and 37 ± 11 vs. 9 ± 2 ms, respectively; P  < 0.05). Echocardiographic analysis showed morphological and functional alterations in HFD rabbits indicative of left ventricle (LV) hypertrophy. Isolated heart studies revealed no changes in repolarization and propagation properties under conditions of normal extracellular K + , suggesting that extrinsic factors could underlie those electrocardiographic modifications. There were no differences in the dynamics of ventricular fibrillation (frequency, wave breaks) in the presence of isoproterenol. However, HFD rabbits showed a small reduction in action potential duration and an increased incidence of arrhythmias during hyperkalaemia. Conclusion High‐fat feeding during 18 weeks in rabbits induced a type II diabetes phenotype, LV hypertrophy, abnormalities in repolarization and susceptibility to arrhythmias during hyperkalaemia.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106944/1/apha12185.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/106944/2/apha12185-sup-0001-FigS1-S4TableS1-S3.pd

    Evidence for Excimer Photoexcitations in an Ordered {\pi}-Conjugated Polymer Film

    Full text link
    We report pressure-dependent transient picosecond and continuous-wave photomodulation studies of disordered and ordered films of 2-methoxy-5-(2-ethylhexyloxy) poly(para-phenylenevinylene). Photoinduced absorption (PA) bands in the disordered film exhibit very weak pressure dependence and are assigned to intrachain excitons and polarons. In contrast, the ordered film exhibits two additional transient PA bands in the midinfrared that blueshift dramatically with pressure. Based on high-order configuration interaction calculations we ascribe the PA bands in the ordered film to excimers. Our work brings insight to the exciton binding energy in ordered films versus disordered films and solutions. The reduced exciton binding energy in ordered films is due to new energy states appearing below the continuum band threshold of the single strand.Comment: 5.5 pages, 5 figure

    Turbulence-induced melting of a nonequilibrium vortex crystal in a forced thin fluid film

    Get PDF
    To develop an understanding of recent experiments on the turbulence-induced melting of a periodic array of vortices in a thin fluid film, we perform a direct numerical simulation of the two-dimensional Navier-Stokes equations forced such that, at low Reynolds numbers, the steady state of the film is a square lattice of vortices. We find that, as we increase the Reynolds number, this lattice undergoes a series of nonequilibrium phase transitions, first to a crystal with a different reciprocal lattice and then to a sequence of crystals that oscillate in time. Initially the temporal oscillations are periodic; this periodic behaviour becomes more and more complicated, with increasing Reynolds number, until the film enters a spatially disordered nonequilibrium statistical steady that is turbulent. We study this sequence of transitions by using fluid-dynamics measures, such as the Okubo-Weiss parameter that distinguishes between vortical and extensional regions in the flow, ideas from nonlinear dynamics, e.g., \Poincare maps, and theoretical methods that have been developed to study the melting of an equilibrium crystal or the freezing of a liquid and which lead to a natural set of order parameters for the crystalline phases and spatial autocorrelation functions that characterise short- and long-range order in the turbulent and crystalline phases, respectively.Comment: 31 pages, 56 figures, movie files not include

    Exact results and scaling properties of small-world networks

    Full text link
    We study the distribution function for minimal paths in small-world networks. Using properties of this distribution function, we derive analytic results which greatly simplify the numerical calculation of the average minimal distance, ˉ\bar{\ell}, and its variance, σ2\sigma^2. We also discuss the scaling properties of the distribution function. Finally, we study the limit of large system sizes and obtain some analytic results.Comment: RevTeX, 4 pages, 5 figures included. Minor corrections and addition

    Analyzing the effects of surface distribution of pores in cell electroporation for a cell membrane containing cholesterol

    Full text link
    This paper presents a model and numerical analysis (simulations) of transmembrane potential induced in biological cell membrane under the influence of externally applied electric field (i.e., electroporation). This model differs from the established models of electroporation in two distinct ways. Firstly, it incorporates the presence of cholesterol (~20% mole-fraction) in biological membrane. Secondly, it considers the distribution of pores as a function of the variation of transmembrane potential from one region of the cell to another. Formulation is based on the role of membrane tension and electrical forces in the formation of pores in a cell membrane, which is considered as an infinitesimally thin insulator. The model has been used to explore the process of creation and evolution of pores and to determine the number and size of pores as a function of applied electric field (magnitude and duration). Results show that the presence of cholesterol enhances poration by changing the membrane tension. Analyses indicate that the number of pores and average pore radii differ significantly from one part of the cell to the other. While some regions of the cell membrane undergo rapid and dense poration, others remain unaffected. The method can be a useful tool for a more realistic prediction of pore formation in cells subjected to electroporation.Comment: 11 pages, 3 figures. v2: added new references, grammatical changes, corrected typo

    Chaos in Small-World Networks

    Full text link
    A nonlinear small-world network model has been presented to investigate the effect of nonlinear interaction and time delay on the dynamic properties of small-world networks. Both numerical simulations and analytical analysis for networks with time delay and nonlinear interaction show chaotic features in the system response when nonlinear interaction is strong enough or the length scale is large enough. In addition, the small-world system may behave very differently on different scales. Time-delay parameter also has a very strong effect on properties such as the critical length and response time of small-world networks

    Ekpyrosis and inflationary dynamics in heavy ion collisions: the role of quantum fluctuations

    Full text link
    We summarize recent significant progress in the development of a first-principles formalism to describe the formation and evolution of matter in very high energy heavy ion collisions. The key role of quantum fluctuations both before and after a collision is emphasized. Systematic computations are now feasible to address early time dynamics essential to quantifying properties of strongly interacting quark-gluon matter.Comment: Talk by R.V. at Quark Matter 2011, Annecy, France, May 23-28, 2011. LaTex, 4 pages; v2, final version to appear in J. Phys.
    corecore