11 research outputs found

    Ballettkörper werden: materielle Involvierungen, Verflechtungen und Differenzierungen im Üben klassischer Tanztechnik

    Get PDF
    Recently, sociological theory has criticized the concept of the ‘rational actor’ from two sides: Practice theory has emphasized the cultural shaping of bodies, Actor Network Theory has promoted artifacts as non, - human, but equal actants. This paper argues for exploring ‘bodies’ and ‘things’ in one integrative perspective. It focuses on the becoming of ballet bodies – asking how other objects are involved here and how they are practically brought into being together with the singular, highly skilled ballet -bodies. The author argues that such processes of ‘becoming together’ depends on particular practical involvements, as well as on entanglements transversal to, and differentiations of everyday units like ‘the body’. In ballet class, wooden bars, music and mirrors play ‘body parts’ as substitute limbs, as temporal and energetic regulator and media. The mirror, moreover, is central to how inhabited bodies are dissected into a shapeable object and a shaping artisan who forms a new unit with the teacher as a manufacturing team. Thus, body parts situationally become things here. The paper shows how an open, symmetrical account of social materiality can be achieved by empirically unfolding both sides of the binary fixation human/non - human

    Body Boundary Work: Praxeological Thoughts on Personal Corporality

    No full text

    Ways of relating : involvements of bodies in ballet class

    No full text

    Superior skin cancer classification by the combination of human and artificial intelligence

    No full text
    Background: In recent studies, convolutional neural networks (CNNs) outperformed dermatologists in distinguishing dermoscopic images of melanoma and nevi. In these studies, dermatologists and artificial intelligence were considered as opponents. However, the combination of classifiers frequently yields superior results, both in machine learning and among humans. In this study, we investigated the potential benefit of combining human and artificial intelligence for skin cancer classification. Methods: Using 11,444 dermoscopic images, which were divided into five diagnostic categories, novel deep learning techniques were used to train a single CNN. Then, both 112 dermatologists of 13 German university hospitals and the trained CNN independently classified a set of 300 biopsy-verified skin lesions into those five classes. Taking into account the certainty of the decisions, the two independently determined diagnoses were combined to a new classifier with the help of a gradient boosting method. The primary end-point of the study was the correct classification of the images into five designated categories, whereas the secondary end-point was the correct classification of lesions as either benign or malignant (binary classification). Findings: Regarding the multiclass task, the combination of man and machine achieved an accuracy of 82.95%. This was 1.36% higher than the best of the two individual classifiers (81.59% achieved by the CNN). Owing to the class imbalance in the binary problem, sensitivity, but not accuracy, was examined and demonstrated to be superior (89%) to the best individual classifier (CNN with 86.1%). The specificity in the combined classifier decreased from 89.2% to 84%. However, at an equal sensitivity of 89%, the CNN achieved a specificity of only 81.5% Interpretation: Our findings indicate that the combination of human and artificial intelligence achieves superior results over the independent results of both of these systems. (C) 2019 The Author(s). Published by Elsevier Ltd

    Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks

    No full text
    Background: Recently, convolutional neural networks (CNNs) systematically outperformed dermatologists in distinguishing dermoscopic melanoma and nevi images. However, such a binary classification does not reflect the clinical reality of skin cancer screenings in which multiple diagnoses need to be taken into account. Methods: Using 11,444 dermoscopic images, which covered dermatologic diagnoses comprising the majority of commonly pigmented skin lesions commonly faced in skin cancer screenings, a CNN was trained through novel deep learning techniques. A test set of 300 biopsy-verified images was used to compare the classifier's performance with that of 112 dermatologists from 13 German university hospitals. The primary end-point was the correct classification of the different lesions into benign and malignant. The secondary end-point was the correct classification of the images into one of the five diagnostic categories. Findings: Sensitivity and specificity of dermatologists for the primary end-point were 74.4% (95% confidence interval [CI]: 67.0-81.8%) and 59.8% (95% CI: 49.8-69.8%), respectively. At equal sensitivity, the algorithm achieved a specificity of 91.3% (95% CI: 85.5-97.1%). For the secondary end-point, the mean sensitivity and specificity of the dermatologists were at 56.5% (95% CI: 42.8-70.2%) and 89.2% (95% CI: 85.0-93.3%), respectively. At equal sensitivity, the algorithm achieved a specificity of 98.8%. Two-sided McNemar tests revealed significance for the primary end-point (p < 0.001). For the secondary end-point, outperformance (p < 0.001) was achieved except for basal cell carcinoma (on-par performance). Interpretation: Our findings show that automated classification of dermoscopic melanoma and nevi images is extendable to a multiclass classification problem, thus better reflecting clinical differential diagnoses, while still outperforming dermatologists at a significant level (p < 0.001). (C) 2019 The Author(s). Published by Elsevier Ltd
    corecore