617 research outputs found

    The expected number of inversions after n adjacent transpositions

    Get PDF
    We give a new expression for the expected number of inversions in the product of n random adjacent transpositions in the symmetric group S_{m+1}. We then derive from this expression the asymptotic behaviour of this number when n scales with m in various ways. Our starting point is an equivalence, due to Eriksson et al., with a problem of weighted walks confined to a triangular area of the plane

    Enumeration of bilaterally symmetric 3-noncrossing partitions

    Get PDF
    Schutzenberger's theorem for the ordinary RSK correspondence naturally extends to Chen et. al's correspondence for matchings and partitions. Thus the counting of bilaterally symmetric kk-noncrossing partitions naturally arises as an analogue for involutions. In obtaining the analogous result for 3-noncrossing partitions, we use a different technique to develop a Maple package for 2-dimensional vacillating lattice walk enumeration problems. The package also applies to the hesitating case. As applications, we find several interesting relations for some special bilaterally symmetric partitions.Comment: 22 page

    Solving multivariate functional equations

    Full text link
    This paper presents a new method to solve functional equations of multivariate generating functions, such as F(r,s)=e(r,s)+xf(r,s)F(1,1)+xg(r,s)F(qr,1)+xh(r,s)F(qr,qs),F(r,s)=e(r,s)+xf(r,s)F(1,1)+xg(r,s)F(qr,1)+xh(r,s)F(qr,qs), giving a formula for F(r,s)F(r,s) in terms of a sum over finite sequences. We use this method to show how one would calculate the coefficients of the generating function for parallelogram polyominoes, which is impractical using other methods. We also apply this method to answer a question from fully commutative affine permutations.Comment: 11 pages, 1 figure. v3: Main theorems and writing style revised for greater clarity. Updated to final version, to appear in Discrete Mathematic

    The vertical profile of embedded trees

    Get PDF
    Consider a rooted binary tree with n nodes. Assign with the root the abscissa 0, and with the left (resp. right) child of a node of abscissa i the abscissa i-1 (resp. i+1). We prove that the number of binary trees of size n having exactly n_i nodes at abscissa i, for l =< i =< r (with n = sum_i n_i), is n0nlnr(n1+n1n01)liri0(ni1+ni+11ni1), \frac{n_0}{n_l n_r} {{n_{-1}+n_1} \choose {n_0-1}} \prod_{l\le i\le r \atop i\not = 0}{{n_{i-1}+n_{i+1}-1} \choose {n_i-1}}, with n_{l-1}=n_{r+1}=0. The sequence (n_l, ..., n_{-1};n_0, ..., n_r) is called the vertical profile of the tree. The vertical profile of a uniform random tree of size n is known to converge, in a certain sense and after normalization, to a random mesure called the integrated superbrownian excursion, which motivates our interest in the profile. We prove similar looking formulas for other families of trees whose nodes are embedded in Z. We also refine these formulas by taking into account the number of nodes at abscissa j whose parent lies at abscissa i, and/or the number of vertices at abscissa i having a prescribed number of children at abscissa j, for all i and j. Our proofs are bijective.Comment: 47 page
    corecore