98 research outputs found

    G6PD deficiency: a polymorphism balanced by heterozygote advantage against malaria

    Get PDF
    n/

    Correction: Somatic mutations in cancer development

    Get PDF
    Since publication of Environmental Health 2011, 10(Suppl 1):S12 [1] it has been noticed that titles and captions for the figures and tables were incorrectly applied. In this full-length correction article, figures and tables have been renumbered with legends and captions applied appropriately. Some minor typographical errors have also been corrected. The inconvenience caused to readers by premature publication of the original paper is regretted

    Somatic mutations in cancer development

    Get PDF
    The transformation of a normal cell into a cancer cell takes place through a sequence of a small number of discrete genetic events, somatic mutations: thus, cancer can be regarded properly as a genetic disease of somatic cells. The analogy between evolution of organisms and evolution of cell populations is compelling: in both cases what drives change is mutation, but it is Darwinian selection that enables clones that have a growth advantage to expand, thus providing a larger target size for the next mutation to hit. The search for molecular lesions in tumors has taken on a new dimension thanks to two powerful technologies: the micro-arrays for quantitative analysis of global gene expresssion (the transcriptome); and ‘deep’ sequencing for the global analysis of the entire genome (or at least the exome). The former offers the most complete phenotypic characterization of a tumor we could ever hope for – we could call this the ultimate phenotype; the latter can identify all the somatic mutations in an individual tumor – we could call this the somatic genotype. However, there is definitely the risk that while we are ‘drowned by data, we remain thirsty for knowledge’. If we want to heed the teachings of Lorenzo Tomatis, I think the message is clear: we ought to take advantage of the new powerful technologies – not by becoming their slaves, but remaining their masters. Identifying somatic mutations in a tumor is important not because it qualifies for ‘oncogenomics’, but because through a deeper understanding of the nature of that particular tumor it can help us to optimize therapy or to design new therapeutic approaches

    Haemoglobin's chaperone

    Get PDF
    n/

    Clinical spectrum and severity of hemolytic anemia in glucose 6-phosphate dehydrogenase-deficient children receiving dapsone

    Get PDF
    Drug-induced acute hemolytic anemia led to the discovery of G6PD deficiency. However, most clinical data are from isolated case reports. In 2 clinical trials of antimalarial preparations containing dapsone (4,4′-diaminodiphenylsulfone; 2.5 mg/kg once daily for 3 days), 95 G6PD-deficient hemizygous boys, 24 G6PD-deficient homozygous girls, and 200 girls heterozygous for G6PD deficiency received this agent. In the first 2 groups, there was a maximum decrease in hemoglobin averaging -2.64 g/dL (range -6.70 to +0.30 g/dL), which was significantly greater than for the comparator group receiving artemether-lumefantrine (adjusted difference -1.46 g/dL; 95% confidence interval -1.76, -1.15). Hemoglobin concentrations were decreased by ≥ 40% versus pretreatment in 24/119 (20.2%) of the G6PD-deficient children; 13/119 (10.9%) required blood transfusion. In the heterozygous girls, the mean maximum decrease in hemoglobin was -1.83 g/dL (range +0.90 to -5.20 g/dL); 1 in 200 (0.5%) required blood transfusion. All children eventually recovered. All the G6PD-deficient children had the G6PD A- variant, ie, mutations V68MandN126D. Drug-induced acutehemolytic anemia in G6PD A- subjects can be life-threatening, depending on the nature and dosage of the drug trigger. Therefore, contrary to current perception, in clinical terms the A- type of G6PD deficiency cannot be regarded as mild. This study is registered at http://www.clinicaltrials.gov as NCT00344006 and NCT00371735. © 2012 by The American Society of Hematology

    Clinical spectrum and severity of hemolytic anemia in glucose 6-phosphate dehydrogenase-deficient children receiving dapsone

    Get PDF
    Drug-induced acute hemolytic anemia led to the discovery of G6PD deficiency. However, most clinical data are from isolated case reports. In 2 clinical trials of antimalarial preparations containing dapsone (4,4′-diaminodiphenylsulfone; 2.5 mg/kg once daily for 3 days), 95 G6PD-deficient hemizygous boys, 24 G6PD-deficient homozygous girls, and 200 girls heterozygous for G6PD deficiency received this agent. In the first 2 groups, there was a maximum decrease in hemoglobin averaging -2.64 g/dL (range -6.70 to +0.30 g/dL), which was significantly greater than for the comparator group receiving artemether-lumefantrine (adjusted difference -1.46 g/dL; 95% confidence interval -1.76, -1.15). Hemoglobin concentrations were decreased by ≥ 40% versus pretreatment in 24/119 (20.2%) of the G6PD-deficient children; 13/119 (10.9%) required blood transfusion. In the heterozygous girls, the mean maximum decrease in hemoglobin was -1.83 g/dL (range +0.90 to -5.20 g/dL); 1 in 200 (0.5%) required blood transfusion. All children eventually recovered. All the G6PD-deficient children had the G6PD A- variant, ie, mutations V68MandN126D. Drug-induced acutehemolytic anemia in G6PD A- subjects can be life-threatening, depending on the nature and dosage of the drug trigger. Therefore, contrary to current perception, in clinical terms the A- type of G6PD deficiency cannot be regarded as mild. This study is registered at http://www.clinicaltrials.gov as NCT00344006 and NCT00371735. © 2012 by The American Society of Hematology

    COVID-19 2022 update: transition of the pandemic to the endemic phase

    Get PDF
    COVID-19, which is caused by the SARS-CoV-2, has ravaged the world for the past 2 years. Here, we review the current state of research into the disease with focus on its history, human genetics and genomics and the transition from the pandemic to the endemic phase. We are particularly concerned by the lack of solid information from the initial phases of the pandemic that highlighted the necessity for better preparation to face similar future threats. On the other hand, we are gratified by the progress into human genetic susceptibility investigations and we believe now is the time to explore the transition from the pandemic to the endemic phase. The latter will require worldwide vigilance and cooperation, especially in emerging countries. In the transition to the endemic phase, vaccination rates have lagged and developed countries should assist, as warranted, in bolstering vaccination rates worldwide. We also discuss the current status of vaccines and the outlook for COVID-19

    COVID-19 one year into the pandemic: from genetics and genomics to therapy, vaccination, and policy

    Get PDF
    COVID-19 has engulfed the world and it will accompany us all for some time to come. Here, we review the current state at the milestone of 1 year into the pandemic, as declared by the WHO (World Health Organization). We review several aspects of the on-going pandemic, focusing first on two major topics: viral variants and the human genetic susceptibility to disease severity. We then consider recent and exciting new developments in therapeutics, such as monoclonal antibodies, and in prevention strategies, such as vaccines. We also briefly discuss how advances in basic science and in biotechnology, under the threat of a worldwide emergency, have accelerated to an unprecedented degree of the transition from the laboratory to clinical applications. While every day we acquire more and more tools to deal with the on-going pandemic, we are aware that the path will be arduous and it will require all of us being community-minded. In this respect, we lament past delays in timely full investigations, and we call for bypassing local politics in the interest of humankind on all continents

    Clinical Significance of G6PD Variants among Palestinians

    Get PDF
    Conclusion: We conclude that children with G6PD A-deficiency are also susceptible to AHA, but demonstrate in direct comparison within this same population that G6PD Mediterranean and G6PD Cairo are more severe forms of deficiency than G6PD A‐. Further, we show that the heretofore poorly studied G6PD Cairo may be associated with low‐level, chronic hemolysis. This study illustrates favism is a significant public health problem in Gaza due to fava beans as a staple in the diet and the coexistence of polymorphic G6PD deficiency variants in the society. Favism is an easily preventable and manageable genetic disorder with the proper awareness, intervention and education programs
    corecore