17 research outputs found

    Using Coupled Eulerian and Lagrangian Grids to Model Explosive Interactions with Buildings

    Get PDF
    This paper presents the development of a computational model that can be used to study the interactions between structures and detonating explosives contained within them. This model was developed as part of an effort to develop a rubble characterization model for use in AmmoSIM, an agent based urban tactical decision aid (UTDA) software for weapon-target pairing. The rubble pile created following the collapse of a building in a combat situation can significantly impact mission accomplishment, particularly in the area of movement and maneuver. The information provided by AmmoSIM will enable both platoon level and command center staff to make informed decisions concerning urban attack tactics. Computational models were created using a combination of AUTODYN 2D and 3D. The detonation was modeled using a 2D wedge, which is a common method used in AUTODYN. The information obtained from the wedge calculation was then written to a data file and subsequently remapped into a larger 3D Euler air grid. The air grid loaded with blast pressure information was coupled to interact with the Lagrangian building parts. The Riedel, Hiermaier and Thoma (RHT) Concrete Model from the AUTODYN material library was utilized to create the components of the building. Results of the latest models will be given. Additionally, the paper details the development of the model at length including topics such as grid sizing, computational cost comparisons, grid interactions, multi-solver coupling, strain erosion, and material parameters and selections

    Neurofunctional Correlates of Ethical, Food-Related Decision-Making

    Get PDF
    A grant from the One-University Open Access Fund at the University of Kansas was used to defray the authorā€™s publication fees in this Open Access journal. The Open Access Fund, administered by librarians from the KU, KU Law, and KUMC libraries, is made possible by contributions from the offices of KU Provost, KU Vice Chancellor for Research & Graduate Studies, and KUMC Vice Chancellor for Research. For more information about the Open Access Fund, please see http://library.kumc.edu/authors-fund.xml.For consumers today, the perceived ethicality of a foodā€™s production method can be as important a purchasing consideration as its price. Still, few studies have examined how, neurofunctionally, consumers are making ethical, food-related decisions. We examined how consumersā€™ ethical concern about a foodā€™s production method may relate to how, neurofunctionally, they make decisions whether to purchase that food. Forty-six participants completed a measure of the extent to which they took ethical concern into consideration when making food-related decisions. They then underwent a series of functional magnetic resonance imaging (fMRI) scans while performing a food-related decision-making (FRDM) task. During this task, they made 56 decisions whether to purchase a food based on either its price (i.e., high or low, the ā€œprice conditionā€) or production method (i.e., with or without the use of cages, the ā€œproduction method conditionā€), but not both. For 23 randomly selected participants, we performed an exploratory, whole-brain correlation between ethical concern and differential neurofunctional activity in the price and production method conditions. Ethical concern correlated negatively and significantly with differential neurofunctional activity in the left dorsolateral prefrontal cortex (dlPFC). For the remaining 23 participants, we performed a confirmatory, region-of-interest (ROI) correlation between the same variables, using an 8-mm3 volume situated in the left dlPFC. Again, the variables correlated negatively and significantly. This suggests, when making ethical, food-related decisions, the more consumers take ethical concern into consideration, the less they may rely on neurofunctional activity in the left dlPFC, possibly because making these decisions is more routine for them, and therefore a more perfunctory process requiring fewer cognitive resources

    Rubble Pile Characterization Model

    Get PDF
    Rubble piles created following the collapse of a building in a combat situation can significantly impact mission accomplishment, particularly in the area of movement and maneuver. Rubble characteristics must be known, for example, in order to predict the ability of a vehicle to override the collateral damage from weapon effects in urban areas. Two types of models are developed: a first-order model and a first-principles-based model. In both models, we assume complete rubblization of the building and develop a rubble profile model using the size and composition of the collapsed structure to predict the rubble volume. In both cases, this profile model includes the size of the footprint area surrounding the original building assuming that the rubble is free to expand horizontally as well as the resulting height of such a rubble pile. Empirical data is now needed to verify the predictive capabilities of these models
    corecore