1,662 research outputs found

    Pulse shape study of the fast scintillation light emitted from xenon-doped liquid argon using silicon photomultipliers

    Full text link
    Xenon-doped liquid argon has been proposed as a good alternative to pure liquid argon in scintillation detectors. In this study, we report on the measurement of the time profile of scintillation light emitted from xenon-doped liquid argon with molar concentrations up to 1600 ppm. A compact setup has been developed for this study, with silicon photomultiplier (SiPM) as the photosensor and 210Po^{210}\mathrm{Po} and 90Sr^{90}\mathrm{Sr} as scintillation sources. An effective model based on the de-excitation processes has been developed to describe the data. The results show that xenon-doped liquid argon is a good fast scintillator and can be used in lieu of tetraphenyl butadiene (TPB) in a way that preserves its capability for particle identification via pulse shape discrimination (PSD)

    Exceptional Performance of Hierarchical Ni-Fe (hydr)oxide@NiCu Electrocatalysts for Water Splitting

    Get PDF
    Developing low‐cost bifunctional electrocatalysts with superior activity for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is of great importance for the widespread application of the water splitting technique. In this work, using earth‐abundant transition metals (i.e., nickel, iron, and copper), 3D hierarchical nanoarchitectures, consisting of ultrathin Ni–Fe layered‐double‐hydroxide (Ni–Fe LDH) nanosheets or porous Ni–Fe oxides (NiFeOx) assembled to a metallic NiCu alloy, are delicately constructed. In alkaline solution, the as‐prepared Ni–Fe LDH@NiCu possesses outstanding OER activity, achieving a current density of 10 mA cm−2 at an overpotential of 218 mV, which is smaller than that of RuO2 catalyst (249 mV). In contrast, the resulting NiFeOx@NiCu exhibits better HER activity, yielding a current density of 10 mA cm−2 at an overpotential of 66 mV, which is slightly higher than that of Pt catalyst (53 mV) but superior to all other transition metal (hydr)oxide‐based electrocatalysts. The remarkable activity of the Ni–Fe LDH@NiCu and NiFeOx@NiCu is further demonstrated by a 1.5 V solar‐panel‐powered electrolyzer, resulting in current densities of 10 and 50 mA cm−2 at overpotentials of 293 and 506 mV, respectively. Such performance renders the as‐prepared materials as the best bifunctional electrocatalysts so far

    Modeling realistic multiphase flows using a non-orthogonal multiple-relaxation-time lattice Boltzmann method

    Full text link
    In this paper, we develop a three-dimensional multiple-relaxation-time lattice Boltzmann method (MRT-LBM) based on a set of non-orthogonal basis vectors. Compared with the classical MRT-LBM based on a set of orthogonal basis vectors, the present non-orthogonal MRT-LBM simplifies the transformation between the discrete velocity space and the moment space, and exhibits better portability across different lattices. The proposed method is then extended to multiphase flows at large density ratio with tunable surface tension, and its numerical stability and accuracy are well demonstrated by some benchmark cases. Using the proposed method, a practical case of a fuel droplet impacting on a dry surface at high Reynolds and Weber numbers is simulated and the evolution of the spreading film diameter agrees well with the experimental data. Furthermore, another realistic case of a droplet impacting on a super-hydrophobic wall with a cylindrical obstacle is reproduced, which confirms the experimental finding of Liu \textit{et al.} [``Symmetry breaking in drop bouncing on curved surfaces," Nature communications 6, 10034 (2015)] that the contact time is minimized when the cylinder radius is comparable with the droplet cylinder.Comment: 19 pages, 11 figure

    Accurate prediction approach of dynamic characteristics for a rotating thin walled annular plate considering the centrifugal stress requirement

    Get PDF
    In allusion to the problem that experimental results of similitude models of a rotating turbine disc predict dynamic characteristics of the prototype, the accurate design method of dynamic similitude models of a rotating thin walled annular plate is investigated by considering the centrifugal stress requirement. The vibration differential equation is employed to deduce geometrically complete scaling laws of dynamic frequency and centrifugal stress. In order to determine accurate distorted scaling laws of dynamic frequency, the sensitivity analysis and determination principle are used. For distorted scaling laws of centrifugal stress, the average approach of candidate distorted scaling laws is proposed, and its mathematical form is simple. Furthermore, the numerical validation indicates that distorted scaling laws can predict dynamic characteristics of the prototype and reflect the strength conditions or even failures of a prototype with good accuracy, and applicable intervals of the distorted scaling law are calculated. Finally, an acceptable procedure of the similitude design method of a rotating thin walled annular plate is provided, which guides to the design of test models considering centrifugal stress requirement

    Unraveling Enhanced Activity, Selectivity, and Coke Resistance of Pt–Ni Bimetallic Clusters in Dry Reforming

    Get PDF
    By introducing Pt atoms into the surface of reduced hydrotalcite (HT)-derived nickel (Ni/HT) catalysts by redox reaction, we synthesized an enhanced active and stable Ni-based catalyst for methane dry reforming reaction. The bimetallic Pt–Ni catalysts can simultaneously enhance the catalyst activity, increase the H2/CO ratio by suppressing reverse water–gas shift reaction, and enhance the stability by increasing the resistance to the carbon deposition during the reaction. Kinetic study showed that 1.0Pt–12Ni reduces the activation energy for CH4 dissociation and enhances the catalytic activity of the catalyst and lowers the energy barrier for CO2 activation and promotes the formation of surface O* by CO2 adsorptive dissociation. It is beneficial to enhance the resistance to the carbon deposition and prolong its service life in the reaction process. In addition, density-functional theory calculations rationalized the higher coke resistance of Pt–Ni catalysts where CH is more favorable to be oxidized instead of cracking into surface carbon on the Pt–Ni surface, compared with Ni(111) and Pt(111). Even if a small amount of carbon deposited on the Pt–Ni surface, its oxidation process requires a lower activation barrier. Thus, it demonstrates that the bimetallic Pt–Ni catalyst has the best ability to resist carbon deposition compared with monometallic samples.publishedVersio
    corecore