6 research outputs found

    Ship detection in SAR imagery: a comparison study

    Get PDF
    This paper presents a ship-detection study with Synthetic Aperture Radar (SAR) images acquired at two different frequencies: X- and C-band. The detection procedure relies on a novel algorithm based on the likelihood functions of both canonical ship target and sea clutter. Spaceborne images were acquired over the same area in the Solent Channel in UK at approximately the same time on the 7th June 2016. Here, datasets are compared in terms of probability of detection (PD), probability of false alarm (PFA) and Target-to-Clutter Ratio (TCR). Detection maps are validated with Automatic Identification System (AIS) data when available and preliminary results show a higher TCR for the X-band SAR image

    Development of Operational Applications for TerraSAR-X

    No full text
    In the course of the TerraSAR-X mission, various new applications based on X-Band Synthetic Aperture Radar (SAR) data have been developed and made available as operational products or services. In this article, we elaborate on proven characteristics of TerraSAR-X that are responsible for development of operational applications. This article is written from the perspective of a commercial data and service provider and the focus is on the following applications with high commercial relevance, and varying operational maturity levels: Surface Movement Monitoring (SMM), Ground Control Point (GCP) extraction and Automatic Target Recognition (ATR). Based on these applications, the article highlights the successful transition of innovative research into sustainable and operational use within various market segments. TerraSAR-X’s high orbit accuracy, its precise radar beam tracing, the high-resolution modes, and high-quality radiometric performance have proven to be the instrument’s advanced characteristics, through, which reliable ground control points and surface movement measurements are obtained. Moreover, TerraSAR-X high-resolution data has been widely exploited for the clarity of its target signatures in the fields of target intelligence and identification. TerraSAR-X’s multi temporal interferometry applications are non-invasive and are now fully standardised autonomous tools to measure surface deformation. In particular, multi-baseline interferometric techniques, such as Persistent Scatter Interferometry (PSI) and Small Baseline Subsets (SBAS) benefit from TerraSAR-X’s highly precise orbit information and phase stability. Similarly, the instrument’s precise orbit information is responsible for sub-metre accuracy of Ground Control Points (GCPs), which are essential inputs for orthorectification of remote sensing imagery, to locate targets, and to precisely georeference a variety of datasets. While geolocation accuracy is an essential ingredient in the intelligence field, high-resolution TerraSAR-X data, particularly in Staring SpotLight mode has been widely used in surveillance, security and reconnaissance applications in real-time and also by automatic or assisted target recognition software
    corecore